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Abstract—Recently, blind techniques have been applied to detect 
malicious traffic and attacks in honeypots. The honeypot traffic can 
be divided into legitimate and malicious traffic, where the legitimate 
traffic corresponds to DHCP, broadcasting, and synchronization. In 
practice, other servers connected to the network may be also targets 
for attacks and malicious traffic. Therefore, it is crucial to develop 
detection techniques for malicious traffic for such computers. In this 
paper, we propose a solution that blindly detects malicious traffic for 
any computer connected to the network. We validate our proposed 
solution considering two types of malicious traffic: synflood and 
portscan.
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I. Introduction
Nowadays one of the greatest challenges in Internet is 

security assurance, obtained by integrity, availability and 
confidentiality of data. There are several ways to provide 
security, taking into account both technical aspects, through 
the use of safety equipments or systems, as administrative 
and personal, related to establishment of a security policy and 
awareness campaigns. Regarding safety equipments or systems, 
we can use for instance firewall, Intrusion Detection Systems 
(IDS) and Intrusion Prevention Systems (IPS).

Several methods have been proposed for identifying and 
characterizing malicious activities. Classical methods typically 
employ data mining [1] [2] and regular file parsing [3] for 
detecting patterns which indicate the presence of specific 
attacks in the analyzed traffic. Recently, automatic blind 
malicious traffic detection techniques have been developed 
for honeypots [4] [5]. However, the honeypot traffic is simpler 
since there are no legitimate applications running. 

The use of Model Order Selection (MOS) Schemes to detect 
highly correlated components as significant network activities; 
and identifying malicious activities in honeypot network flow 
datasets without any previous information or attack signatures 
by applying model order selection schemes has been proposed 
in [4].

In this work, we propose an automatic blind malicious traffic 
scheme to be used in any server of a network. Inspired by [4] 
[5], we model a real network traffic data into three components: 
the legitimate signals, the malicious signals and the noise. 

Our proposed scheme is based on the eigenvalue 
decomposition, however, in contrast to [4] [5], we consider the 
time variation of the greatest eigenvalue. We show that based 
on this variation, attacks such as portscan and synflood can be 
detected.

This paper is organized as follows. In Section II, we define 
the notation used in this paper. In Section III, we discuss 
about data log, and how we model it as signals and noise. In 
Section IV, we characterize the portscan and synflood attacks. 
In Section V, we propose our scheme for the normalized and 
nonnormalized case. In Section VI, we explain in details the 
experiments with real data, and evaluate several MOS scheme 
presenting experimental results which attest the validity of our 
approach. In Section VII, we make our concluding remarks.

II. notation
In this paper the scalars are denoted by italic letters (a, b, 

A, B, α, β), vectors by lowercase bold letters (a, b), matrices by 
uppercase bold letters (A, B), and ai,j denotes the (i, j) elements 
of the matrix A. The superscripts T and -1 are used for matrix 
transposition and matrix inversion, respectively.

III. Data Collection
The log information of a computer connected to the network 

is formed by timestamp, protocol, source IP address, source 
port, destination IP address, destination port and additional 
information, depending on the type of transport protocol used. 

In order to exemplify these collected data, we consider the 
following TCP traffic log:
21:00:34.099289 IP 192.168.1.102.34712 > 200.221.2.45.80: Flags [S], seq 
2424058224, win 14600, options [mss 1460, sackOK,TS val 244136 ecr 
0,nop,wscale 7], length 0

and the UDP traffic log: 
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21:24:42.484858 IP 192.168.1.102.68 > 192.168.1.1.67: BOOTP/DHCP, 
Request from 00:26:9e:b7:82:be, length 300

In this paper, we consider only the following information 
from the log data timestamp, port type and port number.

A. Data Model

The reduced log data is divided into q time slots of N 
samples, where each sample is collected in a certain time 
period. Each element  represents the number of times 
that the port m appears at the n-th time period, at the q-th 
time slot.

The collected data at the q-th time slot is represented by 
, where M represents the amount of ports, and N 

represents the amount of time samples. The matrix contains 
all traffic (signal, noise and attack), and we can model it as: 

	 	  (1)

where  is the matrix that represents the legitimate traffic,
 represents the noise, and  the malicious traffic.

Figure 1.  Traffic matrix , for q = 1, 2, …, Q.

Our goal in this paper is to detect the rank of the matrix 
, given only the matrix . Thereby, if the rank { }  0, 

we have a malicious traffic; otherwise, if rank{ }= 0, there 
is no malicious traffic.

IV. Characterization of portscan  
and synflood attacks

In this section, we show important properties of the 
portscan and synflood. These properties are important to 
explain the validity of the proposed solution.

In the Fig. 2, the portscan transmits only two packets for 
each TCP port and one packet for each UDP port. Note that 
there is a high correlation since the traffic is equal.

Figure 2.  Malicious traffic over M ports vs n time slots (M = 10 and n = 120). 
This traffic profile represents the traffic characterized by portscan, consisting 
of TCP and UDP portscanning.

In the Fig. 3, the synflood attack consists of sending 
hundreds of packets with the SYN flag active in a short 
period of time. In our case, considering this attack, if a server 
with port 80 open, the server is overloaded and may cause 
the unavailability of the service rendered by it. In a time 
interval of ten minutes, there were more than two hundred 
ten thousand packages related to the attack, an unusual traffic 
in a data network, especially by the fact of being concentrated 
in a short period of time.

Figure 3.  Malicious traffic over M ports vs n time slots (M = 1 and n = 120). 
This traffic profile represents the traffic characterized by synflood.

II. Proposed Solution
Basically, the model order of a dataset is estimated as 

the number of main correlated components with energy 
significantly higher than the rest of uncorrelated components. 
In other words, the model order can be characterized by 
a power gap between main components and  the noise 
components. In the context of network traffic, the principal 
components are represented by outstanding network 
activities, such as highly correlated network connections 
which have, for example, the same destination port [4]. 
The efficacy and efficiency of methods based on Principal 
Component Analysis (PCA) depend on the MOS scheme 
adopted, since each scheme has different probabilities of 
detection for different kinds of data [6].

We consider two cases, one case normalizing , and the 
other one nonnormalizing it. The purpose of this was to adapt 
the solutions to the characteristics of portscan and synflood 
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attacks. Thus, we built two correlation matrices. One from 
the normalized case , and other from the 
nonnormalized case .

A. Normalized case
In detecting portscan we have low values associated with 

this attack (Fig. 2), but repeatedly, since we are scanning in 
multiple ports (correlated traffic). Then, when we normalize 
the matrices, the portscan can be collected.

The normalization of the vectors can be obtained by the 
following equation:

	 	  (2)

for q = 1, ..., Q where  is the mean of  and  is the 
deviation standard of .

Once obtained the vectors , we can construct the 
matrix , and then determine the correlation matrix in 
order to find the eigenvalues.

	 	  (3)

where N is the number of the sample time.

The eigenvalue decomposition of  is given by: 

	 	  (4)

where  is a diagonal matrix with the eigenvalues, and 
the matrix  has the eigenvectors corresponding to each 
eigenvalue. However, for our model order selection schemes, 
only the eigenvalues are necessary.

By selecting only the main diagonal of the matrix , via 
diag{ }, and by ranging q = 1, ..., Q, we can build a matrix 

.

Assuming that the eigenvalues  are in the descending 
order, i. e., , the first 
column of the matrix  has the Greatest Eigenvalue Time 
Vector (GETV).

As shown in the Section VI, by using the GETV in the 
model order selection schemes, it’s possible to detect the 
presence of malicious traffic even if applications are running. 

B. Nonnormalized case
In detecting synflood we have a huge uncorrelation traffic. 

Thus, differently of portscan we have in this case only one 
traffic, but with a high value. So, we cannot normalizing 
this traffic since the normalization would cause an abrupt 

reduction of the high value associated with this attack, 
causing it to disappear.

Thus, in order to detect the synflood, we cannot normalize 
the matrix . However, except by normalization, the whole 
procedure to find the GETV is equal to the one shown is 
Subsection V.A. 

C. GETV combined with Model Order Selection 
Schemes

Each model order selection scheme has different 
characteristics. We used the following method in our 
simulations: AIC [7] [8], MDL [7] [8], EDC [8] [9], RADOI 
[10], EFT [11] [13] and SURE [12].

The EFT and EDC models showed the satisfactory results 
for our scheme. In case of EDC, the information criterion is 
a function of the geometric mean, g(i), and arithmetic mean, 
a(i), of the i smallest eigenvalues. Note that  and , q = 1, 
..., Q, should be in descending order. 

The estimate of the model order d can be represented by , 
through the following expressions:

	 	  (5)

	 (6)

where .

To use the (6) we have firstly to put the vector of eigenvalues 
in ascend order.

For the EFT based schemes, i.e. R-D EFT II, R-D EFT, 
M-EFT, and EFT, we have has to compute the threshold 
coefficients, as shown in [13]. Without the threshold 
coefficients, the EFT based schemes cannot be applied. 
By computing these coefficients and applying the EFT it’s 
possible to find the model order of our scheme.

VI. Simulations
In this section, we describe the performed experiments in 

order to validate our proposed scheme for detecting portscan 
and synflood attack in a computer. 

A. Data Analysis
For this simulation we used a computer (based on Linux 

operational system) performing common tasks (web access 
mainly) during an interval of three hours. The application 
tcpdump was used to capture the network traffic, as shown 
in Fig 4.
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Figure 4. Signal traffic over M ports vs n time slots (M = 3 and n = 120). This 
traffic profile represents only the signal, without any kind of attack or noise.

At 21:54h we conducted with the portscan, in order to 
simulate an attacker who wants to know the status of the 
following ports: TCP 21, 22, 23, 25, 110, 143 and 161; and 
UDP 69, 123, and 445. At the range time from 22:10h to 
22:19h we conducted with the synflood attack (log below), in 
order to simulate an attacker who wants to cause a Denial of 
Service (DoS), causing unavailability of services.
22:10:04.986927 IP 192.168.1.104.64263 > 192.168.1.102.600: Flags

[S], seq 3652238756, win 1365, length 0

22:10:04.986961 IP 192.168.1.102.600 > 192.168.1.104.64263: Flags [R.], seq 
0, ack 3652238757, win 0, length 0

Figure 5. Noise traffic over M ports vs n time slots (M = 2 and n = 120). 
This traffic profile represents only the noise, consisting of udp 67 and udp 
68 traffic.

The Fig. 4 shows the signal traffic consisting of requests and 
responses on TCP port 80, TCP port 443 and UDP port 53. 
The TCP port 80 is associated with unencrypted web access, 
the TCP port 443 to encrypted web access, and UDP port 53 
is associated with name resolution, DNS.

The noise traffic (log below) is formed by UDP port 
67 and UDP port 68, associated with the Dynamic Host 
Configuration Protocol (DHCP). It can be seen in Fig. 5.
21:24:42.484858 IP 192.168.1.102.68 > 192.168.1.1.67: BOOTP/DHCP, 
Request from 00:26:9e:b7:82:be, length 300

21:24:42.487652 IP 192.168.1.1.67 > 192.168.1.102.68: BOOTP/DHCP, 
Reply, length 548

B. Eigenvalue Decomposition (EVD)
As described in Section III, the total simulation time of 

120 minutes was fragmented into Q = 6 periods of N = 20 
minutes each, where each period we use the sampling time of 
1 minute. As the simulation began at 21:00h, the first period 
goes from 21:00h until 21:20h (T1), the second from 21:20h 
until 21:40h (T2), the third from 21:40h to 22:00h (T3), the 
fourth from 22:00h until 22:20h (T4), the fifth from 22:20h 
until 22:40h (T5), and finally the sixth from 22:40h to 23:00h 
(T6). Thus, it was possible to build Q = 6 matrices  of the 
total traffic (signal + noise + attack). Obviously not every 
period there is attack, only at T4 occurred the synflood attack 
(Fig. 3), and at T3 the portscan (Fig. 2).

Once we have the  matrices for each period, it is now 
possible to obtain the correlation  and  matrices, 
related to each matrix . With that it was possible to 
obtain the set of eigenvalues for that correlation matrices, 
generating a total of 2Q vectors of eigenvalues: 6 vectors 
related to , built from the normalization of  (Fig. 6), 
and 6 vectors related to , built from the nonnormalizing 
of  (Fig. 7).

Figure 6. Eigenvalues of the normalized case over each time slot. In this 
figure is the greatest eigenvalue related to the portscan is much greater than 
the others.

Figure 7. Eigenvalues of the nonnormalized case over each time slot. In this 
figure is possible to see the eigenvalue related to the synflood (purple line 
index 1).
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Calculating the eigenvalues of each  and  
matrices, we can reduce the size of our matrix , and get 
some interesting conclusions, derived from the eigenvalue 
decomposition properties of the correlation matrices, such 
as: the eigenvectors associated with each eigenvalue are 
orthogonal to each other, and also linearly independent; and 
the eigenvalues are real and nonnegative.

C. Applying Model Order Selection to Data Analysis
Although the variation of the eigenvalues related to the 

attacks, the job is not complete until we find a model that 
applies to this scheme. The estimation of the model order by 
visual inspection is performed by following subjective criteria 
such as considering only the eigenvalues greater than one 
and visually identifying a large gap between two consecutive 
eigenvalues. Then, to let this work the most complete and 
objective as possible we tested several MOS approach, like 
AIC, MDL, EDC, RADOI, EFT and SURE.

Figure 8. Greatest eigenvalue time vector approach related to the 
nonnormalized case. It is possible to see the eigenvalue related to the 
synflood, much greater than the other ones (brown bar index 4).

Before we show the results obtained with the application 
of the models, we will discuss the input values for each MOS 
approach. The Fig. 8 and Fig. 9 show the greatest eigenvalues 
obtained in each period. Thus, we applied the Greatest 
Eigenvalue Time Vector (GETV) approach.

Figure 9. Greatest eigenvalue time vector approach related to the normalized 
case. It is possible to see the eigenvalue related to the portscan, greater than 
the other ones (brown bar index 3).

The method consists of selecting the largest eigenvalues of 
the q = 6 time slots, and apply them to the existing model 
order selection schemes in order to detect malicious traffic. 

In Figs. 8 and 9, we show the greatest eigenvalues of the  
q = 6 time slots. In Fig. 8 we have the nonnormalized case, 

used to detect synflood attack. In this figure it is possible 
to compare the values of the eigenvalues with and without 
the attack. We can see clearly how the component related 
to the attack stands out from the rest. In Fig. 9 we have the 
normalized case, used to detect the portscan. In this figure it 
is possible to compare the values of the eigenvalues with and 
without the attack.

TABLE I.  Nonnormalized Case

Case
Method

AIC MDL EDC RADOI EFT SURE
With 
synflood 2 1 1 4 1 14

Wit hout 
synflood 4 1 0 1 0 13

The tables I and II were obtained after we apply the 
methods cited in our scheme. The table I give us the results 
in the nonnormalized case, and the table II in the normalized 
case.

TABLE II. Normalized Case

Case
Method

AIC MDL EDC RADOI EFT SURE
With 
portscan 1 1 1 1 1 6

Without 
portscan 0 0 0 1 0 1

According to the tables, we see the various model orders 
and found two that stood out. The Efficient Determination 
Criterion (EDC) and Exponential Fitting Test (EFT) showed 
us the correct order models, which is equal to one, indicating 
that there was an attack. The methods are efficient in detecting 
both attacks. The efficiency of the model as it behaves when 
there is no attack, in this case showing that the model order 
is zero, indicating that there is no attack, neither portscan nor 
synflood.	

VII. Conclusion
In this paper we propose The Greatest Eigenvalue Time 

Vector (GETV) approach for detecting portscan and synflood 
in a network traffic flow data collected at a computer. First 
we showed the data log used, and the propose of the model 
for network flow data, in order to verify the validity of our 
approach through simulation results with real log files collected 
at a computer. Several model order selection methods were 
experimented with the simulation data, showing that EDC 
and EFT yields the best results for this type of data.

Since our proposed scheme is blind, it does not require 
previous collection of data and learning periods.
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