
190

Abstract — During the execution of a search warrant, one may try
to hamper law enforcement officials by hiding database artifacts.
One way this can be done is by detaching a given database, which
will drop all its metadata and make it invisible to the DBMS. This
paper describes Microsoft SQL Server’s database files and presents
an algorithm capable of finding and extracting metadata from
those files still present in the file system, in order to be scrutinized
by forensics teams.

“Keywords — database; forensics; anti-forensics; MS SQL Server;
detachment”

1. Introduction
People and organizations use different kinds of repositories

to store their data. Around 92% of data is stored digitally [1],
in medias such as text documents, spreadsheets, e-mails,
web pages and databases. The latter has a few advantages, for
example, making information available to simultaneous users
and applications, ease of access and manipulation of data [2].
In this regard, organizations are increasingly using Database
Management Systems (DBMSes) to store digital information
in a structured fashion [3].

Databases store information related to the activities carried
out by organizations. They may contain financial data,
accounting information, as well as client lists and product
portfolios. As a consequence, in order to protect sensible
information regarding the operation of organizations, there
might be mechanisms to hide either the DBMS itself or its
stored data. Among the most popular DBMSes are the Oracle
RDBMS, Microsoft SQL Server, IBM DB2, MySQL and
PostgreSQL [4].

During the execution of search warrants, law enforcement
agencies look for evidence related to an alleged criminal act
under investigation [5]. Through the analysis of information
contained in a database, illegal activities may be verified,
for instance, money laundering, social security frauds and
tax evasion. As a result, anti-forensic procedures may be
performed with the purpose of hiding database artifacts. A
few examples are: unplugging the DBMS server from the
network, stopping the DBMS service and detaching a specific
database. In this last case, the database will be invisible to the
management system and its metadata will be erased.

To solve the problem of finding database files concealed
by means of detachment, Microsoft SQL Server database files

Finding Detached Microsoft SQL
Server Database Files
Fábio Caús Sícolia, André Morum de Lima Simãob

were studied in depth, using reverse engineering techniques,
in order to identify their physical structures and eventually
present an algorithm capable of identifying files belonging to
detached databases.

The rest of this paper is organized as follows: Section 2
presents the storage structures of a Microsoft SQL Server
database. Section 3 discusses the process of detaching a
database. In Section 4, algorithms by other authors are
studied, a new algorithm is proposed and test results are
displayed. At last, Section 5 presents the conclusions of the
present work.

2. Microsoft SQL Server database files
Microsoft SQL Server makes use of two kinds of files to

map a database: log files and data files [6]. A database must
have at least one file of each kind. On the other hand, a given
file can not belong to more than one database [7].

Log files keep historical data of a database’s transactions and
are used for data recovery purposes [8]. The default extension
for this kind of file is .LDF (Log Data File). Conceptually, a
log file is a set of log records. Physically, the sequence of log
records is stored in a set of files that constitute the transaction
log. The SQL Server Database Engine internally splits each
log file in virtual log files. They have no fixed size and their
quantity is variable in a given physical log file.

Data files store objects, including tables, records, indexes,
procedures and views. These files are classified into two
categories:

•	 Primary: it contains the database’s startup information
and references to other database files, if they exist. It
is recommended that the extension .MDF (Master
Data File) is used to name primary files;

•	 Secondary: it holds data that exceed the storage ca-
pacity of a primary file, complementing them. Their
default extension is .NDF (Not-a-master Data File).

2.1. Data files physical structure
Microsoft SQL Server data files are divided into pages. They

are the fundamental data storage unit and the minimal structu-
re that may be physically read or written by the SQL Server [9].

Up to its version 6.5, pages were 2KB large [10]. However,
since release 7.0, page size was increased to 8KB. Pages are
grouped into extents, composed by eight pages each.

DOI: http://dx.doi.org/10.5769/C2011022

191

At the beginning of each page, lies its header. It has 96 bytes
to store information, such as its number, type and object to
which it belongs. The data records area is located right after
the header. It may also contain free space. Next, there is a
table that keeps the location of records stored within that
page. Figure 1 below displays the structure of a data file page.

Figure 1. Page structure of a data file page

The header of a page keeps its main information divided
into fields [11]. For the purpose of this paper, the most
relevant fields are the “m_pageId” and the “m_type”, described
as follows:

•	 m_pageId: it contains a unique number that identifies
the page within a data file. It has 4 bytes and is located
at 32 bytes from the beginning of the page.

•	 m_type: this indicates the page type. It is the second
byte of the page and its possible values are listed in
Table 1.

Table 1. M_type values and their description

Value Page Type Description

1 Data page
Stores records from a heap table
or from the last level of a clustered
index.

2 Index page

Holds index records from the
superior levels of a clustered index
or from all levels of a non-clustered
index.

3 Text mix
page

Contains pieces of large objects and
portions of text trees.

4 Text tree
page

Keeps segments from a given
attribute of a large object.

7 Sort page Stores temporary results from a sort
operation.

8

GAM
(Global

Allocation
Map) page

Holds information about the
allocation of extents. The third page
of a data file is the first GAM page.

9

SGAM
(Shared
Global

Allocation
Map) page

Contains mixed extents allocation
information. The first SGAM page of
a data file is the file’s fourth.

Value Page Type Description

10
IAM (Index
Allocation
Map) page

Keeps allocation information related
to indexes.

11
PFS (Page

Free Space)
page

Stores allocation and free space
information. The first page of this
kind is the second page of a file.

13 Boot page
Holds general information about a
database. There is only one page of
this type in each database.

15 File header
page

This is the first page of the file. It
contains information related to a file,
such as its unique identifier, group of
files to which it is associated, size and
growth rules.

16 Difference
map page

Stores information regarding which
extents have been modified since the
last differential or full backup. The
seventh page is the first difference
map page of a file.

17 ML map
page

Keeps track of extents that were
modified by minimally-logged
operations since the last full backup.
The first page of this kind is the
eighth page of a given file.

2.1.1. Pages with database’s metadata

The tenth page of every database’s primary data file is a
boot page [12]. It contains information about the base itself
[13], such as the attributes described in Table 2.

Table 2. Attributes in a boot page

Attribute Description Location within
the page

dbi_version Version number of the
current DBMS.

From position 100
to 101.

dbi_
createVersion

Version number of
the DBMS where the
database was initially
created.

From position 102
to 103.

dbi_crdate Database creation date
and time.

From position
140 to 143 (time,
in time ticks after
midnight) and
from position
144 to 147 (date,
in days after
01/01/1900).

dbi_dbname Name of the database. From position 148
to 403.

dbi_dbid Unique identification
number. Position 408.

Another page worthy of notice is the file listing page. It is
the thirty-third of a primary data file and holds records that
list every data and log file that make up the database. Each re-

192

cord related to a given file has 792 bytes and contains the fol-
lowing attributes: file_id, logical name and full path, located
at the positions 8, 10 and 265, respectively, from the start of
the record.

3. Database detachment
The procedure of detaching a database is generally carried

out when one wants to move its data and log files to a different
physical location or to another server instance [14]. In order
to do that, one may use the stored procedure “sp_detach_db”
or use the “SQL Server Management Studio Object Explorer”
graphic user interface.

When a database is detached, it is removed from its SQL
Server instance. This way, the base may no longer be accessed
or seen by the DBMS. In addition, the base’s metadata in the
administrative tables “master.dbo.sysdatabases” and “master.
dbo.sysaltfiles” are erased. However, the base itself remains in-
tact, along with its data files and log files. Therefore, it can be
reattached to the same instance where it was or to any other
by using those files.

4. Methodology
The goal of the present work was to identify files from a de-

tached Microsoft SQL Server database. At first, existing algo-
rithms that claimed to resolve that issue were tested and their
limitations were assessed. Then, physical structures of data
and log files were examined, which led to the identification of
their main attributes’ contents and location. As a result, a new
algorithm was proposed and run against a test environment.

In the following sections, existing algorithms are discussed,
a new algorithm is presented and test results are displayed.

4.2. Existing algorithms
Paul Els [15] published an article with an algorithm to

identify detached database files. He suggested to locate files
named with the extensions MDF, NDF and LDF on disk and
then query the “master.dbo.sysaltfiles” table to check which of
those files were currently assigned to active databases. A file
which was not associated to any database was pointed as be-
ing from a detached one.

However, Els’ algorithm has some limitations. First of all,
the algorithm examines only files having the default name
extensions. Even though it is recommended to use default ex-
tensions to name database files, it is not mandatory. Therefore,
there may be files that have those extensions but do not be-
long to databases, in addition to actual database files without
default extensions in their names. In this regard, it is suggest-
ed that the algorithm analyzes files based on their contents,
instead of on their names. Another downside is that the algo-
rithm tries to make use of a connection to the DBMS, which
may have been shutdown. Moreover, while the search is being
carried out, one may not have proper credentials to be able to
read the “sysaltfiles” table. Yet another scenario not addressed

by Els’ algorithm occurs when the volume that stores the files
is offline. Finally, the algorithm uses the “xp_cmdshell” func-
tion, which is disabled by default from version 2005 onwards.

Ozar [16] also proposed an algorithm intended to find the
same class of database files. He introduced a verification to
test if the “xp_cmdshell” was enabled before trying to use it.
Ozar’s algorithm is similar to Els’ [15], sharing the described
limitations, such as the name extension based identification
and the need to connect to the database service. It has an-
other shortcoming of not being able to verify multiple DBMS
instances.

4.3. Proposed algorithm
The algorithm assumes that files of a detached database will

be readable by the operating system. On the other hand, files
from an active base, belonging to a running DBMS instance,
will not be available for reading or writing by processes other
than the DBMS itself. This happens because the DBMS holds
locks to its active files, not letting other processes access them.
Thus, the algorithm is based on the assumption that the files it
can actually read are not related to active databases.

The first step of the algorithm execution is to verify if the
examined file has the leading hexadecimal sequence 01 0F
00 00. If so, the file has the fingerprint of a Microsoft SQL
Server file. The first eight bytes of such a file keep respec-
tively the following fields: m_headerVersion, m_type, m_
typeFlagBits, m_level, m_flagBits, m_objId and m_indexId
(two bytes) [17].

Then, the algorithm checks if the file has the characteristics
of a data file. As such, it has a PFS, a GAM and an SGAM page
as second, third and fourth page, respectively. That way, the
“m_type” field values of those pages have to match the cor-
responding values of those kinds of pages. If that is the case,
the examined file will be classified as a data file. Otherwise, as
a log file.

Data files may be of the primary or secondary kind. To dif-
ferentiate between them, their tenth page must be read. If it is
a boot page, the file will be classified as a primary data file. If
not, as a secondary data file.

After the file identification phase is done, additional infor-
mation may be obtained. If the file is a primary data file, its
creation date, its version and the version of the DBMS where
the file was created may be read from its boot page. In addi-
tion, from the file listing page, the following attributes are ob-
tained: file_id, logical name and full path of data and log files
which make up the database. Furthermore, from a secondary
data file, its logical name may be extracted.

4.4. Deployment of the algorithm in a test envi-
ronment

The aforementioned algorithm was implemented as a pro-
gram in the Perl language. Then, it was run on a disk partition
containing 76 detached database files of Microsoft SQL Server

193

versions 7.0, 2000, 2005, 2008 and 2008 R2. The environment
had also four files from active databases, which belonged to a
running DBMS.

From the primary data files, the algorithm obtained the
name of the database to which the file used to belong and a list
of other data and log files from the same base. Besides, logical
names were extracted from secondary data files. Results were
compared with the ones obtained by means of the SQL Serv-
er’s “DBCC checkprimaryfile” command [18]. The algorithm
identified every file correctly and there were no false positives.

Additional tests were carried out in the same environment,
but this time the DBMS was not running. All the 76 detached
database files were correctly identified by the proposed algo-
rithm. In this scenario, however, it produced false positives,
indicating active database files as being from detached ones.

Finally, El’s and Ozar’s algorithms were run on the same test
environments. Both yielded the same results. On the first en-
vironment, the algorithms recognized 54 out of 76 detached
database files. They missed 22 files, all of which didn’t have
the default name extensions. On the second scenario, how-
ever, the algorithms could not be executed. Since they were
written in the SQL Server scripting language, they require that
the DBMS is running, which was not the case.

The proposed algorithm was considered successful. Al-
though there were some false positives when the DBMS was
not running, the main goal of the algorithm was achieved, not
letting database files go unnoticed. In addition, it also per-
formed better than the existing algorithms on both scenarios.

Changes to the proposed algorithm were considered to
reduce false positives. Querying the “master.dbo.sysaltfiles”
table to verify files currently assigned to databases would not
be achievable for the very situation of the DBMS not being
started, which itself produced the false positives during the
tests. Alternatively, one could delve into the offline DBMS
data files looking for the actual records on disk from the men-
tioned system table.

5. Conclusion
Among anti-forensic procedures that may be carried out

on a database, detachment leads to erasing its metadata and
making the base invisible to the DBMS.

Existing algorithms to find files from detached Microsoft
SQL Server databases [15, 16] are ineffective in several
situations, such as when database files do not have default
name extensions, the DBMS is offline or administrative
credentials are unavailable.

In order to create a new algorithm, physical structures
of data and log files were scrutinized to bring forward their
main attributes’ contents and location.

As a consequence, an algorithm was conceived to find
detached Microsoft SQL Server databases files by actually
going into files’ contents and interpreting their internal

structures. Thereupon, it was implemented in the Perl
programming language and it was run on a test environment
with 76 files from detached databases. The proposed
algorithm was able to correctly identify questioned files
and extract their main metadata, being more effective than
existing algorithms for the same purpose.

Acknowledgements
This paper was produced with institutional support by

the Brazilian Federal Police (DPF) and with financial aid
from the National Public Security and Citizenship Program
(PRONASCI), an initiative led by the Ministry of Justice. The
studies were carried out under the supervision of Professors
from the Electrical Engineering Department at University
of Brasilia, who contributed to directing the efforts and
producing high level scientific knowledge.

References
[1] 	 Peter Lyman and Hal R. Varian, How much information? (2003).

Available at: <http://www2.sims.berkeley.edu/research/projects/how-
much-info-2003/>. Accessed on 15/09/2010.

[2] 	 Yvonne Miller, History of DBMS/Relational Database (2010). Available
at: <http://juicyarticles.net/articles/History-of-DBMSRelational-
Database-5356>. Accessed on 15/09/2010.

[3] 	 Miranda Welch, Information governance and Stewardship for Records
and Information Management (2009). Available at: <https://www.cis.
unisa.edu.au/ wki/images/5/58/Welch_thesis_June_01_2009.doc>.
Accessed on 17/09/2010.

[4] 	 Colleen Graham et al, Market Share: RDBMS Software by Operating
System, Worldwide (2009). Gartner 2009 Worldwide RDBMS Market
Share Reports.

[5] 	 Antonio Miranda de BARROS, Busca e apreensão no Processo Penal
(2007). Available at: <http://sisnet.aduaneiras.com.br/lex/doutrinas/
arquivos/060907.pdf>. Accessed on 19/09/2010.

[6] 	 Buck Woody, SQL Server Reference Guide: Files and Filegroups
(2009). Available at: <http://www.informit.com/guides/content.
aspx?g=sqlserver&seqNum=42>. Accessed on 20/09/2010.

[7] 	 MSDN Library, Understanding Files and Filegroups (2010). Available
at: <http://msdn.microsoft.com/en-us/library/ms189563.aspx>.
Accessed on 20/09/2010.

[8] 	 MSDN Library, Files and Filegroups Architecture (2010). Available at:
<http://msdn.microsoft.com/en-us/library/ms179316.aspx>. Accessed
on 20/09/2010.

[9] 	 MSDN Library, Understanding Pages and Extents (2010). Available at:
<http://msdn.microsoft.com/en-us/library/ms190969.aspx>. Accessed
on 20/09/2010.

[10] 	 Tom Pullen, Data Page Structures in SQL Server 6.5 (2001). Available
at: <http://www.sql-server-performance.com/articles/dba/65_data_
structure_p1.aspx>. Accessed on 20/09/2010.

[11] 	 Paul S. Randal, Inside the Storage Engine: Anatomy of a page (2007).
Available at: <http://sqlskills.com/BLOGS/PAUL/post/Inside-the-
Storage-Engine-Anatomy-of-a-page.aspx>. Accessed on 22/09/2010.

[12] 	 SQL Server Simplified, Architecture Series 2 - Boot page (2008).
Available at: <http://sqlsimplified.com/architecture_series_2>.
Accessed on 22/09/2010.

[13] 	 Paul S. Randal, Boot pages, and boot page corruption (2008). Available
at: <http://www.sqlskills.com/blogs/paul/post/Search-Engine-
QA-20-Boot-pages-and-boot-page-corruption.aspx>. Accessed on
22/09/2010.

[14]	 MICROSOFT Technet, Detaching and Attaching Databases (2010).
Available at: <http://technet.microsoft.com/en-us/library/ms190794.
aspx>. Accessed on 20/09/2010.

[15]	 Paul Els, Managing Free Space (2009). Available at: <http://www.
sqlservercentral.com/articles/Administration/67692/>. Accessed on
23/09/2010.

194

[16] 	 Brent Ozar, Find Detached Databases (2009). Available at: <http://
sqlserverpedia.com/wiki/Find_Detached_Databases>. Accessed on
23/09/2010.

[17] 	 Eka Siswanto, Unraveling MS SQL 2000 MDF Format (Part 1) (2008).
Available at: <http://eka-siswanto.blogspot.com/2008/06/unraveling-
ms-sql-2000-database-format.html>. Accessed on 22/09/2010.

[18] 	 Alexander Chigrik, Useful Undocumented Maintenance SQL Server
2008 DBCC Commands (2009). Available at: <http://www.sswug.org/
articles/viewarticle.aspx?id=46986>. Accessed on 24/09/2010.

Fábio Caús Sícoli has a bachelor degree in Computer Science from University of Brasilia (2004) and a postgraduate degree in Cryptography and Network Security
from Fluminense Federal University (2010). He is also a masters student in Computer Forensics and Information Security in the Electrical Engineering Department
at University of Brasilia. He has been working as a forensic expert in computer crimes in the Brazilian Federal Police for the last six years.

André Morum de Lima Simão has a bachelor degree in Computer Science from Brasilia Catholic University (2000) and a postgraduate degree in Information
Security Management from University of Brasilia (2002). He joined the Brazilian Federal Police’s forensic experts team six years ago, where he has been working
since then. Nowadays, he is also a masters student in Computer Forensics and Information Security in the Electrical Engineering Department at University of
Brasilia.

