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Abstract — Model order selection (MOS) schemes are frequently 
applied in several signal processing applications. In this paper, 
we propose a new application for such state-of-the-art model 
order selection schemes, which is an automatic method for 
blind identification of malicious activities in honeypot systems. 
Our proposed blind automatic techniques are efficient and need 
no previous training nor knowledge of attack signatures for 
detecting malicious activities. In order to achieve such results, 
we model network traffic data as signals and noise, which allows 
us to apply modified signal processing methods. We adapt model 
order selection schemes to process network data, showing that 
RADOI achieves the best performance and reliability in detecting 
attacks. The efficiency and accuracy of our theoretical results are 
tested on real data collected at a honeypot system located at the 
network border of a large banking institution in Latin America.

Keywords-Intrusion — Detection; Honeypot; Model Order 
Selection; Principal Component Analysis

1.  Introduction

The Problem. A honeypot system collects malicious traffic 
and general information on malicious activities directed 
towards the network where it is located [23]. It serves both as 
data source for intrusion detection systems as well as a decoy 
for slowing down automated attacks [13], [16]. Efficient 
algorithms for identifying malicious activities in honeypot 
data are particularly useful in network management statistics 
generation, intelligent intrusion prevention systems and 
network administration in general as administrators can 
take actions to protect the network based on the results 
obtained [28]. Even though honeypots provide a reliable and 
representative source for identifying attacks and threats [1], 
they potentially produce huge volumes of complex traffic and 
activity logs making their efficient and automated analysis 
quite a challenge.

Previous Works. Several methods have been proposed 
for identifying and characterizing malicious activities in 
honeypot traffic data based on a variety of approaches and 
techniques [21], [9], [7]. Classical methods typically employ 
data mining [9], [7] and regular file parsing [21] for detecting 
patterns which indicate the presence of specific attacks in 

the analysed traffic and computing general statistical data 
on the collected traffic. These methods depend on previous 
knowledge of the attacks which are going to be identified 
and on the collection of significant quantities of logs in order 
to work properly. Recently, machine learning techniques 
have also been applied to honeypot data analysis and attack 
detection [24] yielding interesting results as those techniques 
are able to identify malicious activities without relying on 
previously provided malicious traffic patterns and attack 
signatures. However, it is necessary to run several analysis 
cycles during a learning period in order to train the system 
to recognize certain attacks before such methods are able to 
work effectively, rendering them computationally expensive. 
Furthermore, if the legitimate traffic patterns are altered by 
any natural causes, machine learning based methods may 
yield a significant number of false positives, identifying 
honest connections as malicious activities. These systems are 
also prone to failure in not detecting attacks which were not 
included in the learning process or whose traffic resembles 
honest patterns.

Principal component analysis (PCA) based methods 
[2], [3] came on to the scene as a promising alternative to 
traditional techniques. PCA based methods identify the 
main groups of highly correlated indicators (i.e. principal 
components) which represent outstanding malicious 
activities in network traffic data collected at honeypots. Such 
methods are based on the clever observation that attack 
traffic patterns are more correlated than regular network 
traffic. Since they solely rely on statistical analysis of the 
collected data, these methods need not be provided with 
previous information on the attacks to be detected neither 
need to be trained to recognize attacks and separate them 
from legitimate traffic. This characteristic makes PCA based 
honeypot data analysis methods suitable for automatic attack 
detection and traffic analysis. However, current PCA based 
methods [2], [3] still require human intervention, rendering 
them impractical for automatic analysis and prone to errors 
such as false positives.

Our Contributions. We propose a method for 
automatically identifying attacks in low interaction honeypot 
network traffic data based on state-of-the-art model order 
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selection schemes [6], [4]. In order to obtain this result we 
present the following contributions:

•	 We propose to model network traffic as signals and 
noise data, interpreting highly correlated compo-
nents as significant network activities (in this case, 
malicious activities).

•	 It is possible to identify malicious activities in 
honeypot network flow datasets without any previous 
information or attack signatures by applying model 
order selection schemes.

•	 Blind malicious detection schemes in the literature 
[3], [2] require human inspection to detect malicious 
activities. In this paper, we obtain a blind automatic 
detection method without the need of any human 
intervention by using model order selection schemes.

•	 We adapt RADOI to successfully identify the main 
attacks contained in the simulation data set, efficiently 
distinguishing outstanding malicious activities from 
noise such as backscatter and broadcast packets.

More generally, our method is an intrusion detection system 
which does not require previous knowledge of attack signatu-
res and might find interesting applications in contexts other 
than honeypot systems. Finally, being based on eigenvalues de-
composition techniques, our method is efficiently implemen-
table in hardware [14] and can also be parallelized [10].

Roadmap. The remainder of this paper is organized as 
follows. In Section 2, we define the notation used in this 
paper. In Section 3, we formally introduce the concept of 
honeypots, discuss classical analysis methods and present 
an analysis of related work on PCA based methods for 
honeypot data analysis. In Section 4, we describe the dataset 
preprocessing method through which we transform the 
data before Model Order Selection (MOS). In Section 5, we 
introduce classical MOS and also state-of-the-art schemes and 
propose our analysis method based on RADOI. In Section 6, 
we evaluate several MOS schemes in experiments with real 
data, presenting experimental results which attest the validity 
of our approach. In Section 7, we finally conclude with a 
summary of our results and direction for future research.

2. Notation
Throughout the paper scalars are denoted by italic letters  

( ), vectors by lower-case bold-face letters (a, b) 
and matrices by bold-face capitals (A, B). Lower-order parts 
are consistently named: the (i, k)-element of the matrix A is 
denoted as .

We use the superscripts  and  for transposition and 
matrix inversion, respectively.

3. Related Works
In this section, we introduce the concept of honeypot 

systems and discuss the several methods used for obtain and 
analysing data in such systems. Special attention is given to 

methods based on principal component analysis, which are 
the focus of our results.

A honeypot is generally defined as an information system 
resource whose value lies in unauthorized or illicit use of that 
resource [23], although various definitions exist for specific 
cases and applications. Honeypot systems are designed to at-
tract the attention of malicious users in order to be actively 
targeted and probed by potential attackers, differently from 
intrusion detection systems (IDS) or firewalls, which protect 
the network against adversaries. Generally, network honeypot 
systems contain certain vulnerabilities and services which are 
commonly targeted by automated attack methods and mali-
cious users, capturing data and logs regarding the attacks di-
rected at them. Data collected at honeypot systems, such as 
traffic captures and operating system logs, is analyzed in order 
to gain information about attack techniques, general threat 
tendencies and exploits. It is assumed that traffic and activities 
directed at such systems are malicious, since they have no pro-
duction value nor run any legitimate service accessed by regu-
lar users. Because of this characteristic (inherent to honeypot 
systems) the amount of data captured is significantly reduced 
in comparison to network IDSs which capture and analyze as 
much network traffic as possible.

Network honeypot systems are generally divided into 
two categories depending on their level of interaction with 
potential attackers: Low and High interaction honeypots. 
Being the simplest of network honeypots, the Low Inte-
raction variant simply emulates specific operating systems 
TCP/IP protocol stacks and common network services, 
aiming at deceiving malicious users and automated attack 
tools [15]. Moreover, this type of honeypot has limited inte-
raction with other hosts in the network, reducing the risks 
of compromising network security as a whole if an attacker 
successfully bypasses the isolation mechanisms implemen-
ted in the emulated services. High interaction honeypots are 
increasingly complex, running real operating systems and 
full implementations of common services with which a ma-
licious user may fully interact inside sandboxes and isolation 
mechanisms in general. This type of honeypot captures more 
details concerning the malicious activities performed by an 
attacker, enabling analysis systems to exactly determine the 
vulnerabilities which were exploited, the attack techniques 
utilized and the malicious code executed.

Depending on the type of honeypot system deployed 
and the specific network set up, honeypots prove effective 
for a series of applications. Since those systems concentrate 
and attract malicious traffic, they can be used as decoys for 
slowing down or completely rendering ineffective automated 
attacks, as network intrusion detection systems and as a data 
source for identifying emergent threats and tendencies in the 
received malicious activity [13]. In the present work, we focus 
on identifying the principal malicious activities performed 
against a low interaction network honeypot system. Such a 
method for malicious activity identification may be applied 
in different scenarios, e.g. network intrusion detection.
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A. Data Collection
Among other logs which may provide interesting 

information about an attacker’s action, low interaction 
honeypots usually collect information regarding the network 
connections originated and directed at them, outputting 
network flow logs. These log files represent the basic elements 
which describe a connection, namely: timestamp, protocol, 
connection status (starting or ending), source IP, source 
port, destination IP and destination port. The following line 
illustrates the traffic log format of a popular low interaction 
honeypot system implementation [18]:

2008-06-04-00:00:03.7586 tcp(6) S 56.37.74.42 4406 
203.49.33.129 1080 [Windows XP SP1]

It is possible to extract diverse information from this 
type of log while reducing the size of the analysis dataset 
in comparison to raw packet captures, which contain each 
packet sent or received by the monitored node. Furthermore, 
such information may be easily extracted from regular traffic 
capture files by aggregating packets which belong to the same 
connection, obtained the afore mentioned network flows

B. Data Analysis Methods
Various methods for honeypot data analysis with different 

objectives have been developed in order to accompany the 
increasing size of current honeypot systems, which are 
being deployed in progressively larger settings, comprising 
several different nodes and entire honeynets (networks of 
decoy hosts) distributed among different sites [1]. Most of 
the proposed analysis techniques are focused on processing 
traffic captures and malicious artefacts (e.g. exploit binaries 
and files) collected at the honeypot hosts [21]. Packet 
capture files, from which it is possible to extract network 
flow information (representing network traffic received and 
originated at the honeypot), provide both statistical data 
on threats and the necessary data for identifying intrusion 
attempts and attacks [22].

Classical methods for analysis of honeypot network traffic 
capture files rely on traffic pattern identification through file 
parsing with standard Unix tools and custom made scripts 
[18]. Basically, these methods consist of direct analysis of 
plain-text data or transferring the collected data to databases, 
where relevant statistical information is then extracted with 
custom queries. Such methods are commonly applied for 
obtaining aggregate data regarding traffic, but may prove 
inefficient for large volumes of data. Recently, distributed 
methods based on cloud infrastructure have been proposed 
for traffic data aggregation and analysis [12], efficiently 
delivering the aggregated traffic information needed as input 
for further analysis by other techniques.

In order to extract relevant information from sheer 
quantities of logs and collected data, data mining methods 
are applied to honeypot data analysis, specifically looking 
for abnormal activity and discovery of tendencies detection 
among regular traffic (i.e. noise). The clustering algorithm 

DBSCAN is applied in [7] to group packets captured in 
a honeypot system, distinguishing malicious traffic from 
normal traffic. Multiple series data mining is used to analyze 
aggregated network flow data in [9] in order to identify 
abnormal traffic features and anomalies in large scale 
environments. However, both methods require previous 
collection of large volumes of data and do not efficiently 
extract relevant statistics regarding the attacks targeting the 
honeypot with adequate accuracy.

A network flow analysis method based on the MapReduce 
cloud computing framework and capable of handling large 
volumes of data was proposed in [12] as a scalable alternative 
to traditional traffic analysis techniques. Large improvements 
in flow statistics computation time are achieved by this 
solution, since it distributes both processing loads and storage 
space. The proposed method is easily scalable, achieving the 
throughput needed to efficiently handle the sheer volumes 
of data collected in current networks (or honeypots), which 
present increasingly high traffic loads.This method may be 
applied to honeypot data analysis, providing general statistical 
data on the attack trends and types of threats.

C. Methods based on Principal Component Analysis
Several honeypot data analysis methods have been 

proposed in current literature, among them are principal 
component analysis (PCA) based techniques [3], [2]. Such 
methods aim at characterizing the type and number of 
malicious activities present in network traffic collected at 
honeypots through the statistical properties and distribution 
of the data. They are based on the fact that attack traffic 
patterns are more correlated than regular traffic, much like 
principal components in signal measurements. The first 
step of PCA is the estimation of the number of principal 
components. For this task, model order selection (MOS) 
schemes can be applied to identify significant malicious 
activities (represented by principal components) in traffic 
captures. Automatic MOS techniques are crucial to identify 
the number of the afore mentioned principal components in 
large network traffic datasets, this number being the model 
order of the dataset.

Basically, the model order of a dataset is estimated as 
the number of main uncorrelated components with energy 
significantly higher than the rest of components. In other 
words, the model order can be characterized by a power 
gap between the main components. In the context of 
network traffic, the principal components are represented 
by outstanding network activities, such as highly correlated 
network connections which have, for example, the same 
destination port. In this case, the principal components 
represent the outstanding groups of malicious activities 
or attacks directed at the honeypot system and the model 
order represents the number of such attacks. The efficacy 
and efficiency of PCA based methods depend on the 
MOS schemes adopted, since each scheme has different 
probabilities of detection for different kinds of data 
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(depending on the kind of noise and statistical distribution 
of the data itself) [4].

A method for characterizing malicious activities in 
honeypot traffic data through principal component analysis 
techniques was introduced in [2]. This method consists in 
mainly two steps, dataset preprocessing and visual inspection 
of the eigenvalues profile of the covariance matrix of the 
preprocessed honeypot traffic samples in order to obtain 
the number of principal components (which indicate the 
outstanding groups of malicious activities), i.e. the model 
order. First, raw traffic captures are parsed in order to obtain 
network flows consisting of the basic IP flow data, namely 
the five-tuple containing the key fields: source address, 
destination address, source port, destination port, and 
protocol type. Packets received or sent during a given time 
slot (300 seconds in the presented experiments) which have 
the same key field values are grouped together in order to 
form these network flows. The preprocessing step includes 
further aggregation of network flow data, obtaining what the 
authors define as activity flows, which consist of combining 
the newly generated flows based upon the source IP address 
of the attacker with a maximum of sixty minutes inter-
arrival time between basic connection flows. In the principal 
component analysis step, the preprocessed data is denoted 
by the p-dimensional vector  representing the 
network flow data for each time slot. First, the network flow 
data obtained after the preprocessing is transformed into zero 
mean and unitary variance with the following equation:

		  			          (1)

for i = 1, ..., p, where  is the sample mean and  is the sample 
variance for . Then the sample correlation matrix of  is 
obtained with the following expression:

		  		        (2)

After obtaining the eigenvalues of the basic network 
flow dataset correlation matrix , the number of principal 
components is obtained via visual inspection of the screen 
plot of eigenvalues in descending order. The estimation of the 
model order by visual inspection is performed by following 
subjective criteria such as considering only the eigenvalues 
greater than one and visually identifying a large gap between 
two consecutive eigenvalues.

The same authors proposed another method based on the 
same PCA technique and the equations described above for 
detecting new attacks in low-interaction honeypot traffic [3]. 
In the proposed model new observations are projected onto 
the residuals space of the least significant components and 
their distances from the k-dimensional hyperspace defined 
by the PCA model are measured using the square prediction 
error (SPE) statistic. A higher value of SPE indicates that the 
new observation represents a new direction that has not been 
captured by the PCA model of attacks seen in the historical 

honeypot traffic. As in the previous model, the model order of 
the preprocessed dataset is estimated through different criteria, 
including visual inspection of the eigenvalues screen plot.

Even though those methods are computationally efficient, 
they are extremely prone to error, since the model order 
selection schemes (through which the principal components 
are determined) are based on subjective parameters which 
require visual inspection and human intervention. Apart from 
introducing uncertainties and errors, the requirement for 
human intervention also makes it impossible to implement 
such methods as an independent automatic analysis system. 
Thus these PCA based analysis methods are impractical 
for large networks, where the volume of collected data is 
continuously growing. Moreover, the uncertainty introduced 
by subjective human assistance is unacceptable, since it may 
generate a significant number of false positive detections.

4. Applying Model Order Selection to Honeypot 
Data Analysis

Our method for MOS based honeypot data analysis 
bascially consists in applying state of the art MOS schemes 
to identify principal components of pre-processed aggregated 
network flow datasets. Each principal component represents 
a malicious activity and the number of such principal 
components (obtained through MOS) represents the number 
of malicious activities. In case this number is equal to zero, no 
malicious activity is present and in case it is greater than zero, 
there is malicious activity. Our objective in this paper is to 
automatically estimate the number of principal components 
(i.e. model order) of network flow datasets collected by 
honeypots. In this section, we introduce our method in 
details and the steps of data pre-processing necessary before 
model order selection is performed on the final dataset.

It has been observed that the traffic generated by outstan-
ding malicious activities targeting honeypot systems has signi-
ficantly higher volumes than regular traffic and is also highly 
correlated, being distinguishable from random traffic and ba-
ckground noise [2]. Due to these characteristics it is viable to 
apply model order selection schemes to identify the number of 
principal components which represent malicious activities in 
network traffic captured by honeypot systems. Assuming that 
all traffic directed to network honeypot systems is malicious 
(i.e. generated by attempts of intrusion or malicious activities), 
outstanding highly correlated traffic patterns indicate indivi-
dual malicious activities. Hence, each principal component 
detected in a dataset containing information on the network 
traffic represents an individual malicious activity. Analysing 
such principal components is an efficient way to estimate the 
number of different hostile activities targeting the honeypot 
system and characterizing them.

In order to estimate the number of principal components 
(i.e. malicious activities) the application of model order 
selection schemes arises naturally as an efficient method. 
After an appropriate preprocessing of the raw network traffic 
capture data, it is possible to estimate the model order of the 
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dataset thus obtaining the number of malicious activities. 
The preprocessing is necessary in order to aggregate similar 
connections and network flows generated by a given malicious 
activity. It is observed that, after applying the preprocessing 
described in the previous section, groups of network flows 
pertaining to the same activity (e.g. groups which represent 
connections to and from the destination and source ports, 
respectively) have high correlated traffic profiles, yielding 
only one principal component. Thus, hostile activities which 
generate multiple connections are correctly detected as a 
single activity and not several different events.

Our method consists in applying RADOI with noise pre-
whitening, a state-of-the-art automatic model order selection 
scheme based on the eigenvalues profile of the noise covariance 
matrix, to network flow datasets after preprocessing the data 
with the aggregation method described in the next sub-section. 
RADOI with noise pre-whitening was determined to be the 
most efficient method for performing model order selection of 
this type of datasets through experiments with real honeypot 
data where several classical and state-of-the-art MOS schemes 
were evaluated (refer to Section VI for the results).

Since it is generally assumed that all traffic received 
by network honeypot systems is malicious, the 
model order obtained reflects the number of 
significant malicious activities present in the 
collected traffic, which are characterized by highly 
correlated and outstanding traffic. In our approach, 
the model order d obtained after applying the MOS 
scheme is considered as the number of malicious 
activities detected and the d highest dataset 
covariance matrix eigenvalues obtained represent 
the detected malicious activities. Further analysis 
of these eigenvalues enables other algorithms or 
analysts to determine exactly which ports were 
targeted by the detected attacks [3].

D. Data Pre-Processing Model
Before performing model order selection on the collected 

dataset it is necessary to transform it in order to obtain 
aggregate network flow data which represents the total 
connections per port and transport layer protocol. The 
proposed preprocessing method considers an input of 
network flow data extracted directly from log files generated 
by specific honeypot implementations (e.g. honeyd [18]) or 
from previously parsed and aggregated raw packet capture 
data (such parsing may be easily performed via existing 
methods [2]). It is possible to efficiently implement this 
preprocessing method based on a cloud infrastructure, 
providing nice scalability for large volumes of data [12]. 
Network flow data is defined as lines which represent the 
basic IP connection tuple for each connection originated or 
received by the honeypot system, containing the following 
fields: time stamp, transport layer protocol, connection 
status (starting or ending), source IP address, source port, 
destination IP address and destination port.

First, the original dataset is divided into n time slots 
according to the time stamp information of each network 
flow (n is chosen according to the selected time slot size). 
Subsequently the total connections directed to each m 
destination ports targeted during each time slot are summed 
up. We consider that the total connections to a certain 
destination port m during a certain time slot n is represented 
as follows: 

	            		         
where xm(n) Є ℝ is the measured data in the port, x0m(n) Є ℝ is 
the component related to the outstanding malicious activities 
and nm(n) Є ℝ is the noise component, mainly consisting of 
random connections and broadcasts sent to port m. Note 
that in case that no significant malicious activity is present, 
the traffic is mostly composed of port scans, broadcasts and 
other random non-malicious network activities, for instance. 
Therefore, the noise presentation fits well in (3).

In the matrix form, we can rewrite (3) as

		         			          

Where X Є ℝMXN is the total number of connections directed to 
M ports during N time slots. Particularly, if a certain port m has 
not been targeted by outstanding malicious activities, the m-th 
line of X0 is fulled with zeros. On the other hand, if a certain 
i-th host is responsible for a malicious activity resulting in 
connections to Pi ports, these ports have a malicious traffic S i Є 
ℝPiXN highly correlated. Therefore, mathematically, X0 is given by 

		     			         

where  is a zero padding matrix, such that the product 
Ji by Si inserts zero lines in the ports without significant 
malicious activities. The total number of hosts with malicious 
traffic is represented by d. In an extreme case, when each line 
of Si has very high correlation, the rank of Si is 1. Therefore, 
the rank of X0 is d which is also known in the literature as 
model order or the total number of principal components, 
representing the total number of outstanding malicious 
activities detected in the honeypot dataset.

In order to represent the correlated traffic of the malicious 
traffic, we assume the following model 

		            Si = Qi  S’i, 	                                        (6)

where S’i Є ℝPiXN represents totally uncorrelated traffic and Qi 
Є ℝPiXPi is the correlation matrix between the ports. Note that 
if the correlation is not extremely high, the model order d 
represents the sum of the number of uncorrelated malicious 
activities of all hosts which interacted with the honeypot 
environment. Therefore, the model order d is at least equal to 
the total number of malicious hosts.

The correlation matrix of X defined in (4) is computed as 

		       Rxx = E{XX T}	                                                    
		             = R0xx + Rnn'
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where E{.} is the expected value operator and Rnn =  I Є ℝMxM 
is valid for zero mean white noise, where  is the variance 
of the noise samples in (3). Note that we assume that the 
network flows generated by outstanding malicious activities 
are uncorrelated with the rest of traffic.

5. Model Order Selection Schemes
Several model order selection schemes exist, each of them 

with different characteristics which may affect their efficacy 
when applied to network traffic data. In this section, we 
present an overview of model order selection schemes and 
propose the necessary modifications in order to apply those 
schemes to malicious activity identification in honeypot 
data.

Usually, model order selection techniques are evaluated by 
comparing the Probability of Correct Detection or PoD (i.e. 
the probability of correctly detecting the number of principal 
components of a given dataset) of each technique for the type 
of data that is being analysed, since the different statistical 
distributions, noise and characteristics of specific datasets may 
alter the functioning and accuracy of different MOS schemes 
[4]. In other words, it is necessary to evaluate different MOS 
schemes with different characteristics in order to determine 
which MOS scheme is better suited for detecting malicious 
activities in honeypot network flow data. In this sense, we 
propose methods based on different schemes and evaluate 
them in the experiments presented in the next section.

In Subsection V-A, we show a brief review of the 1-D 
Akaike’s Information Criterion (AIC) [26], [6] and 1-D 
Minimum Description Length (MDL) [26], [6], which are 
classical MOS methods, serving as a standard for comparing 
and evaluating novel MOS techniques and applications. Since 
RADOI  [20] is one of the most robust model order selection 
schemes mainly for scenarios with colored noise, we propose 
the RADOI together with a noise prewhitening scheme in 
Subsection V-B.

 Considering data preprocessed with the procedures 
described in the previous section, our method proceeds to 
performing model order selection of the dataset obtained. 
Similarly to [2], we also apply the zero mean in the measured 
sample. Therefore,

		          x zMm
 = xm - xm , 		         (8)

where the vector xi Є ℝ1xN has all temporal samples of network 
flows directed to the port i, xi is the mean value, and x zMi 
contains the zero mean temporal samples. Such procedure is 
applied for each group of network flows directed to a single 
port in order to obtain Xn zM. By applying (8), the assumption 
that the samples have zero mean is fulfilled.

The techniques shown here are based on the eigenvalues 
profile of the noise covariance matrix Rxx. Since the covariance 
matrix is not available, we can estimate it by using samples 
of the traffic. Therefore, we can approximate the covariance 
matrix to the following expression 

		       xx =  zM  , 			          

where xx is an estimate of Rxx. In contrast to [4], we do 
not apply the unitary variance reviewed in (1), since the 
variance, which is the power of the components, is an useful 
information for the adopted model order selection schemes. 

The eigenvalue decomposition of xx is given by

		        xx = EΛE ,   	                                      

where Λ is a diagonal matrix with the eigenvalues λ1, λ2, ... , λα 
with α = min(M, N) and the matrix E has the eigenvectors. 
However, for our model order selection schemes, only the 
eigenvalues are necessary.

E. 1-D AIC and 1-D MDL
In AIC, MDL and Efficient Detection Criterion (EDC) 

[29], the information criterion is a function of the geometric 
mean, g(k), and arithmetic mean, a(k), of the k smallest 
eigenvalues of (10) respectively, and k is a candidate value for 
the model order d.

In [5], we have shown modifications of AIC and MDL for 
the case that M > N, which we have denoted by 1-D AIC and 
1-D MDL. These techniques can be written in the following 
general form

		   = argminJ(k)        where                            
(11)

J(k) =  — N (α  — k)log (g(k)
a(k)) + p(k, N, α),

where  represents an estimate of the model order d. The 
penalty functions for 1-D AIC and 1-D MDL are given by 
p(k, N, α) = k (2α — k) and p(k, N, α) =  k(2α — k) log (N) 
respectively. According to [13] α = min[M, N], while according 
to [21], we should use α = M, and 0 ≤ k ≤ min[M, N].

F. RADOI with Noise Prewhitening
The RADOI model order selection scheme is an empirical 

approach [20]. Here we propose to incorporate the noise 
prewhitening to the RADOI scheme in order to improve its 
performance. In order to apply the noise prewhitening, first 
samples containing only noise traffic are collected. Such noise 
samples can be obtained from Mn ports where no significant 
malicious activities are observed. In practice, we can select 
the Mn ports with lowest traffic rates (i.e. ports which received 
an insignificant number connections during the time span 
observed, for example, less than 1 connection per minute). 
By using the noise samples, we compute an estimate of the 
noise correlation matrix

		       nn =  zM  , 	         		       

where N zM contains the zero mean noise samples computed 
similarly as in (8). With nn, the noise prewhitening matrix 
can be computed by applying the Cholesky decomposition

                                        nn = LL T,  		                       
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where L Є ℝMn xMn is full rank.
The noise prewhitening of X is given by

		         X pwt = L-1 X			        

We compute the eigenvalues λ1, λ2, ... , λα of the covariance 
matrix of X pwt and we apply them on the RADOI cost 
function, which is given by

		   = argminRADOI(k)
                 		  k	      	    

where	      

        

where
 

 
and α is given by

	         		       

In [20], it is shown that RADOI outperforms the 
Gerschgoerin disk estimator (GDE) criterion [27] in the 
presence of colored noise, while its performance in the 
presence of white noise is similar to the GDE criterion.

6. Simulations
In this section, we describe a series of experiments that 

were performed in order to validate our proposed scheme for 
detection of malicious activities in honeypot network traffic. 
Throughout this section we consider a dataset collected at a 
large real world honeypot installation. First, in Subsection 
VI-B, we manually determine the number of attacks in the 
experimental dataset and then analyse the data preprocessing 
model. In Subsection VI-C, we compare the performance of 
several model order selection schemes presented in Section 
V, determining that RADOI with zero mean and noise pre-
whitening is the most efficient and accurate method for 
analysing such data.

G. Experimental Environment
In the experiments presented in this section we consider 

a dataset containing network flow information collected 
by a large real world honeyd virtual network honeypot 
installation. The reader is referred to [4], [6] in order to check 
the performance of the MOS schemes for simulated data. 
Extensive simulation campaigns are performed in [4], [6].

Honeyd is a popular framework which implements virtual 
low interaction honeypots simulating virtual computer 
systems at the network level [18]. The simulated information 
system resources appear to run on unallocated network 
addresses, thus avoiding being accessed by legitimate users. In 
order to deceive network fingerprinting tools and honeypot 
evasion methods, honeyd simulates the networking protocol 

stack of different operating systems. It is also capable of 
providing arbitrary network services and routing topologies 
for an arbitrary number of virtual systems.

Among other monitoring and management related data, 
honeyd automatically generates network activity logs in the 
form of network flow data as described in Section III-A. A 
dataset comprised of such network flow logs is analysed in the 
following experiments. For experimental purposes, the data 
preprocessing model and the different model order selection 
schemes were numerically implemented, providing accurate 
results. However, the issues of efficiency [14], [10] and 
scalability [12] for large volumes of data are not addressed, 
which is left as subject for future works.

Figure  1: Traffic over M different ports vs N time slots. Each time slot spans 
10 minutes. The total amount of M ports and the total amount of N time slots 
are 29 and 37, respectively.

H. Data model fitting based on collected data
It is necessary to manually analyse the experimental dataset 

in order to obtain an accurate estimate of the number of attacks 
that it contains. Notice that this manual analysis is not part of the 
proposed method, which is completely automatic. The results 
obtained in this analysis are merely utilized as a reference value 
to be compared with the results obtained by the different MOS 
schemes in the process of validating our automatic results.

Besides the number of connections per port, this manual 
analysis takes into consideration common knowledge on 
which services are mostly targeted in such attacks. First, we 
are interested in obtaining summarized information on the 
total number of connections per port. Thus, we evaluate our 
proposed data preprocessing model, obtaining a preprocessed 
summarized dataset from the original network flow data.

A time slot of 10 minutes is considered, with data collection 
starting at at 2007-08-02-13:51:59 and spanning approximately 
370 minutes (or 37 slots). During the data collection period 
considered, network activities targeting 29 different TCP and 
UDP ports were observed, thus yielding a preprocessed data 
matrix X  Є ℝMxN with M = 29 different ports and N = 37 time 
slots, representing the total number of connections directed to 
or originated from the M ports during each of the N time slots. 
In Fig. 1, the preprocessed data matrix X is depicted, providing 
graphical information on the traffic profiles. Although it is not 
possible to distinguish all curves, notice that some ports have 



149

outstandingly higher traffic while the traffic profile pertaining 
to the rest of the ports are close to zero, behaving akin to noise. 
Thus, we show that some traffic profile curves are significantly 
higher than others due to the attacks directed at them. Once 
again note that this is not part of the blind automatic method 
proposed, serving only as a reference for our experiments.

According to Fig.  1, the traffic profiles of some ports clearly 
indicate malicious activities and attacks. By manually analysing 
the collected network flow data and visually inspecting the traffic 
plot, it is possible to determine that a threshold of more than an 
average of 100 connections per 10 minutes time slots to a certain 
port during the observed time span indicates malicious activities. 
Traffic profiles of less than an average of 100 connections per 
10 minutes to a given port (or 0.17 connections per second) 
are considerably less than the number of connections to the 
highly attacked ports, being considered noise and not indicating 
significant malicious activities. Therefore, we conclude that 
outstanding malicious activities are observed on ports m = 1, 
2, 7, 8, 12, 15, 20, that in Fig. 1 respectively correspond to the 
following ports: TCP 1080, TCP 445, TCP 1433, TCP 135, TCP 
8555, TCP 23293, and TCP 17850.

Further analysis of the traffic profile of each port indicates 
that the pair of ports TCP 135 and TCP 23293 are destination 
and source ports for the same connections respectively. 
Therefore, their traffic profiles are almost identical, i.e., 
highly correlated. The ports TCP 445 and TCP 8555 are also 
destination and source ports for a certain group of connections, 
as well as the ports TCP 1433 and TCP 17850. The destination 
ports of the pairs described before along with TCP port 1080 are 
typically opened by commonly probed and attacked services, 
which explains the intense activity observed and confirms 
the hypothesis that the traffic directed to those ports actually 
represents malicious activities.

Although a high level of network activity is observed in 7 
different ports, 3 pairs have very highly correlated patterns and 
for this reason can be considered as only 3 main components 
(representing 3 different significant malicious activities 
which, in this case, are easily identifiable as attacks to services 
commonly present in popular operating systems and network 
equipment). Hence, given the traffic profile in Fig. 1 we 
conclude that the model order for the dataset being analysed in 
the following experiments is equal to 4, since it is the number 
of malicious activities or attacks identified after manually 
analysing network data.

In Fig. 2, the traffic profile of all ports which received or 
originated less than an average of 100 connections per time 
slot is depicted. Notice that, once again, it is not possible to 
distinguish the traffic profiles but this figure clearly shows 
that traffic not generated by attacks behaves like random 
noise. Thus, the traffic in those ports is considered noise 
(generated by broadcast messages, faulty applications and 
other random causes) and we consider, therefore, that it does 
not characterize malicious activities. This analysis is not part of 
the method proposed, serving only as reference for analysing 
our experiments.

Based on the data model presented in Section 4, the data 
shown in Fig. 2 is that of the noise components represented by 
matrix N Є Mn xN. Note that since P1 = 7 and m= 1, 2, 7, 8, 12, 
15, 20 , the zero padding matrix J Є MxP1 described in (5) which 
indicates the ports with outstanding malicious activities has  
j(i,k) = 1 only for the following values of  (i, k) = {(1,1), (2,2) (7,3), 
(8,4), (12,5), (15,6) (20,7)}, otherwise, j(i,k) = 0.

Figure  2: Noise traffic over Mn ports vs N time slots (Mn  = 22 and 
N = 37). This traffic profile represents noise which does not indicate 
significant malicious activities.

We now compute the eigenvalues of the covariance matrix 
of obtained from the preprocessed dataset depicted in Fig. 
1 and the eigenvalues of the covariance matrix of obtained 
from the noise only components of the preprocessed dataset 
depicted in Fig. 2. The eigenvalue profiles of the covariance 
matrices obtained from the full preprocessed dataset and the 
noise only components of are depicted in Fig. 3 and in Fig. 4, 
respectively. Comparing both eigenvalues profiles in log scale, 
the eigenvalues in Fig. 4 which do not represent malicious 
activities fit much better to the linear curve than the eigenvalues 
which indicate outstanding malicious activities.1 In addition, 
by visual inspection, it is possible to estimate the model order 
in the malicious traffic in Fig. 3, which is clearly equal to 4 
(as indicated by the break up in the linear eigenvalues profile, 
which behaves as a super-exponential profile).

Figure  3: Malicious activity traffic plus noise eigenvalues profile compared 
to the linear fit. Plot of the logarithm base 10 of the eigenvalues λi vs the 
index i of the eigenvalues. The total of eigenvalues is α = min(M, N) = 29. The 
covariance matrix is computed via obtained from the complete preprocessed 
dataset shown in Fig. 1.

1	 The exponential profile of the noise eigenvalues is a characteristic already 
observed in the literature. [8], [19], [5]
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After analysing the eigenvalue profile in Fig 3, the raw 
collected honeypot network activity logs and the traffic 
profiles obtained in the preprocessed dataset it is possible 
to consistently estimate the model order as 4. While the 
traffic profile and the network activity logs indicate a high 
level of network activity in certain ports, further analysis 
of the collected data confirms that the connections to such 
ports pertain to 4 significant malicious activities, since the 
4 destination ports targeted are typically used by commonly 
probed and attacked services. Furthermore, the break up in 
the eigenvalue profile of the covariance matrix obtained from 
the full preprocessed dataset also indicates that the model 
order is 4. Therefore, we conclude that the model order of 
the dataset used for the experiments proposed in this section 
is equal to 4, and consider this value as the correct model 
order for evaluating the accuracy of the several MOS schemes 
tested in the remainder of this section.

Figure  4: Noise only eigenvalues profile compared to the linear fit. The total 
of eigenvalues is α = min(Mn, N) = 22. The covariance matrix is computed via 
obtained from the noise only preprocessed dataset shown in Fig. 2

As shown in this subsection, it may be possible to estimate 
the model order by visual inspection, manually determining 
the amount of malicious activities present in the dataset. 
Note that it was necessary to correlate raw collected network 
data, traffic profiles and information on common attacks in 
order to verify the correctness of the estimated model order. 
However, by visual inspection, the model order estimation 
becomes subjective, i.e., the model order of a same eigenvalue 
profile may vary for each person who inspects it, introducing 
an unacceptable uncertainty in the malicious activity 
identification process. Since the PoD of human dependent 
MOS schemes varies uncontrollably, it is impossible to 
guarantee a minimal probability of correctly detecting attacks 
and an average false positive percentage. Moreover, for real 
time applications and scenarios involving large quantities 
of data, it is necessary to employ an automatic scheme to 
estimate the model order.

I. Model order selection on the preprocessed 
dataset

In several scenarios it is not possible to visually identify 
the malicious traffic. However, in our data, this is possible. 
Therefore, in Section VI-B, we estimate the amount of 

malicious traffic, i.e., the model order, through human 
intervention. Once the model order is known for our 
measured data from Section VI-B, we can apply our model 
order selection schemes presented in Section V. In this 
section, we verify the performance of these model order 
selection schemes, determining that RADOI with zero mean 
and noise pre-whitening is the most efficient and accurate 
method for analysing such data.

First, the zero mean zero mean is applied to the preprocessed 
dataset according to (8). After the application of zero mean (8) 
in the dataset shown in Fig. 1, the total amount of connections 
directed and originated from each port assumes negative 
values, which have no physical meaning but affect the PoD of 
several MOS schemes. The effect on the eigenvalues profile is 
almost insignificant when comparing the pure preprocessed 
dataset to the dataset after the application of zero mean. 
However, the accuracy of the model order selection schemes 
may vary when the zero mean is applied, even though it is 
insignificant for visual inspection purposes.

Note that the eigenvalues profiles obtained for the noise 
only and full dataset cases after applying the zero mean have 
similar characteristics to the eigenvalues profiles obtained 
for the preprocessed data before applying the zero mean, 
in the sense that the eigenvalues which do not represent 
malicious activities fit much better to the linear curve than 
the eigenvalues which indicate outstanding malicious 
activities. Moreover, it is also possible to clearly estimate the 
model order as 4 by visual inspection of the signal plus noise 
eigenvalues profile after zero mean.

Having preprocessed the original network flow dataset, 
applied the zero mean in the noise only dataset and applied 
the zero mean in the full dataset, we now proceed to actually 
estimating the model order of the original dataset. In order to 
evaluate each MOS scheme the model orders of both the full 
dataset (containing both noise and outstanding traffic) and 
the noise only dataset are estimated. In these experiments we 
estimate the model order using the following MOS schemes: 
1-D AIC [26], [6], 1-D MDL [26], [6], efficient detection 
criterion (EDC) [29], Nadakuditi Edelman Model Order 
selection scheme (NEMO) [21], Stein’s unbiased risk estimate 
(SURE) [25], RADOI [20] and KN [11].

Finally, the model order of the complete dataset after 
applying the zero mean is estimated, yielding the results 
shown in Table I.

Table  1: Model order selection via the eigenvalues  
of the covariance matrix of the signal plus noise samples.

AIC MDL EDC SURE RADOI RADOI 
w/ PKT KN NEMO

21 21 13 11 3 4 11 13

In Table I, note that RADOI with prewhitening returns 
the correct estimation of the model order while the other 
MOS schemes fail. In other words, RADOI correctly detects 
the number of attacks in the analysed dataset. These results 
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validate our assumption that RADOI can successfully detect 
attacks in network traffic flow data obtained in honeypot 
systems, since it correctly estimates the model order as the 
number of attacks present in the dataset. Hence, we conclude 
that RADOI has the best performance in real world honeypot 
network flow data analysis via PCA.

7. Conclusions
In this paper we presented a blind automatic method 

for detecting malicious activities and attacks in network 
traffic flow data collected at honeypot systems. First we 
propose a dataset preprocessing model for network flow 
data obtained by many honeypot systems and we verify the 
validity of our approach through simulation results with real 
log files collected at a honeypot system in operation at the 
network of a large banking institution. Several model order 
selection methods were experimented with the preprocessed 
simulation data, showing that RADOI yields the best results 
for this type of data.

Honeypot traffic flow data behaves like measurements in 
signal processing, in the sense that if the traffic in honeypots 
does not represent significant attacks, the eigenvalues of the 
covariance matrix of the traffic samples have an exponential 
profile, linear in log scale. On the other hand, if connections 
are highly correlated (indicating significant malicious 
activities), a break appears in the exponential curve of the 
eigenvalues profile of the traffic samples covariance matrix. 
This break in the exponential curve profile indicates the 
model order which, in this case, represents the number of 
significant malicious activities observed in the honeypot 
data. The principal components and eigenvalues obtained 
can also be further analysed for identifying the exact attacks 
which they represent depending on which ports they are 
related to.

Since it does not require previous collection of large 
quantities of data nor adaptive learning periods, the solution 
proposed in the present work is an interesting alternative 
to classical honeypot data analysis methods, such as data 
mining and artificial intelligence methods. Since it is solely 
based on the correlation between network flows, it is capable 
of automatically detecting attacks in varying volumes of 
honeypot traffic without depending on human intervention 
or previous information. Thus, it eliminates the need for 
attack signatures and complex rule parsing mechanisms. As 
a future work, we point out further experimentation with 
other model order selection schemes in order to obtain an 
attack detection method that yields correct results even when 
malicious activities are not present in the analysed dataset 
(i.e. yield model order equal to zero).
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