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Abstract — Computer forensic text corpora are usually very 
heterogeneous. While classification, by file type or other criteria, 
should be an aid in the exploration of such corpora, it does not 
help in the task of thematically grouping together documents. 
Adaptive Resonance Theory (ART) describes a number of self-
organizing artificial neural networks that employ an unsupervised 
learning process and is specially designed to learn new patterns 
without forgetting what it has already learned, overcoming the  
important  restriction defined by the stability/plasticity dilemma. 
In this direction, this paper applies the ART1 algorithm (ART with 
binary input vectors) to thematically cluster documents returned 
from query tools used with forensic text corpora. Documents that 
would previously be presented in a disorganized and often long 
list are thematically clustered, giving the examiner a faster and 
effective way of obtaining a general picture of document content 
during forensic examinations. Our experimental results are 
expressive to validate our approach, achieving high agreement 
between the clustering solution processed with our software 
package and the gold standard defined by domain area experts.

Keywords — ART1; artificial neural networks; computer forensics; 
document clustering

1.  Introduction
Text is very important in forensic examinations. Computer 

forensic text corpora often consist of a very heterogeneous 
mix of artifacts, including but not limited to: office suite 
documents and spreadsheets, PDF files, email, web browser 
and instant messaging history files, and a huge list of text 
strings, which are extracted from unallocated and slack space. 
It is very common to find all of these types of forensic artifacts 
in computers and discrete media seized by law enforcement. 
Finding, organizing and analyzing evidence from this diverse 
mix of artifacts takes more time and effort than the resources 
available, especially considering the never-ending growth of 
storage capacity [1].

A. Forensic examinations and forensic text string 
searches

After evidence is seized or acquired, examination begins. 
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A computer forensic examination is a procedure that is both 
broad and deep, performed by a specialist that is responsible 
and legally accountable for handling the evidence, keeping 
the chain of custody and writing a report with his findings. 
Depending on the size and complexity of data, an examination 
may take a long time to complete. Two techniques commonly 
used to speed up examinations are data reduction [2] and 
text indexing [3]. Data reduction consists of applying filters 
during pre-processing to exclude certain portions of data 
that are known to be safely ignorable, usually by means of 
querying a hash database, while text indexing consists of 
building a text index so that files can be searched quickly after 
the pre-processing phase.

The current process of text string searching using computer 
forensic tools is basically the same: the forensic examiner inputs 
search strings and the application returns a number of search 
results, or hits, for the examiner to peruse. It is not uncommon 
for text searches to return hundreds to thousands of hits. All hits 
must be returned, because the application cannot distinguish 
the relevant ones from the irrelevant. The task of reviewing the 
hits is subjective in nature and belongs to the domain specia-
list – the examiner. Thus, it becomes critically important for the 
application to present hits in such a manner that the examiner 
may quickly and efficiently review them. Unfortunately, cur-
rent computer forensic applications at most categorize hits by 
file type – a process not much more sophisticated than running 
the tool grep on the image file [4]. As storage capacity of seized 
computers and media begins to surpass the terabyte range, the 
need for better ways of displaying and navigating search hits be-
comes even more apparent. A survey distributed to computer 
forensics experts published in 2010 in an MSc thesis [5] found 
out that 60.7% of respondents chose “greater efficiency of data 
searching” as one of the top 3 main changes in forensics tools 
that would enable the examiner to spend less time on a case. 
Despite the importance of the research subject, relatively little 
research has been done to develop efficient searching mecha-
nisms with adequate presentation methods for the exploration 
of computer forensic text corpora [6, 7, 8, 9,10,11].

B. Document clustering
Text classification or text categorization is the process of 

assigning text documents to predefined classes or labels. As 
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the classes and the training instances that belong to them are 
known beforehand, the classification problem is a task of su-
pervised learning [12]. The process of document clustering 
aims to discover natural groupings (clusters) so that docu-
ments within a cluster are similar to one another but are dis-
similar to documents in other clusters [13]. Clustering differs 
from classification in that it assumes no prior knowledge of 
categories or the existence of a training set, and as such it is 
a task of unsupervised learning. Clustering may be applied 
in scenarios where classification is inadequate or impossible. 
This kind of scenario is commonplace in computer forensic 
examinations, where the knowledge obtained in a case usu-
ally cannot be reused in other unrelated cases.

There exist many clustering algorithms that differ in sev-
eral aspects, among which one may cite: computational com-
plexity, cluster quality, and sensitivity to the order of presen-
tation of the inputs. While it is desirable to build the best pos-
sible clusters, there is no way to define the best clusters, since 
there are many correct, context-dependent ways to arrange 
the documents for a given corpus. Clustering quality may be 
evaluated by means of internal and external criteria. An in-
ternal criterion measures intra-cluster similarity (documents 
belonging to the same cluster should be similar) and inter-
cluster similarity (documents belonging to different clusters 
should be dissimilar). While good scores on an internal crite-
rion are desirable, they do not necessarily translate into good 
effectiveness in an application [14]. An external criterion, on 
the other hand, measures how well the clustering solution 
matches a set of classes produced by human judges, or gold 
standard. Thus, it is desirable for a clustering algorithm to 
produce clusters that approximate the gold standard classes.

Many clustering algorithms take vectors as input. Accord-
ing to [15], the vector space model can be used to represent 
text documents as vectors of terms. The document collection 
is represented as a matrix where each document is a row and 
each term is a column representing a different dimension. In 
this way, a document collection containing N documents and 
M terms can be represented by the N x M matrix presented 
in Table I, where anm is an attribute that represents the term tm 
frequency of term dn in document . This is also known as the 
bag-of-words model, or simply BOW.

For the purpose of the present work, binary input vectors 
will be used. The matrix may be modeled as a binary inci-
dence matrix, where anm is 1 if term tm occurs in document dn 
and is 0 otherwise.

TABLE I. Bag-Of-Words model

Even moderately sized document collections often have 
several tens of thousands of different terms, with each 

document containing relatively few terms. The matrix is thus 
very sparse. This poses a problem for clustering algorithms 
because considerable resources are spent to represent 
and perform calculations on a large volume of data that is 
mostly empty except for a relatively small percentage of 
terms in each document. This problem is known as the curse 
of dimensionality, and several reduction techniques have 
been proposed to deal with it in the domain of document 
clustering. These techniques aim to reduce the computational 
complexity of document clustering algorithms, or at least 
their running time, while keeping the quality and relevance 
of the output.

C. Search result clustering
A common representation of search results is a simple 

list the user must scan from top to bottom until she finds 
the information that addresses her information needs. In 
the context of computer forensics examinations where each 
search request may return hundreds to thousands of results, 
it can be confusing and time-consuming to wade through 
all of them.

Document clustering can also be applied to a subset of the 
document collection. Search result clustering can be used to 
cluster the documents that were returned in response to a 
query. In [16] van Rijsbergen presents the cluster hypothesis 
which states that “Closely associated documents tend to be 
relevant to the same requests”. In other words, if there is a 
document from a cluster that is relevant to a search request, 
then it is likely that other documents from the same cluster 
are also relevant. This is because clustering puts together 
documents that share many terms [14]. Thus, if the searching 
results are clustered, similar documents will appear together 
in coherent groups, which are arguably easier to scan than 
a disorganized list. If the cluster hypothesis holds, when the 
examiner finds a cluster where the first few documents are 
relevant to the query then the whole cluster can be flagged 
for more detailed analysis; conversely, a cluster where the 
first few documents are judged irrelevant can be discarded 
right away.

Search result clustering has been found to offer promising 
results, both in traditional text-based information retrieval 
and web-based information retrieval [17,18,19]. This paper 
focuses on the use of ART1 clustering algorithm to apply to 
search results returned from queries to computer forensic 
text corpora. The scenario investigated is that of hard 
clustering, where each document is a member of exactly 
one cluster.

The rest of this paper is organized as follows: in Section II 
we present related research work; in Section III we discuss 
the Adaptive Resonance Theory with the architecture 
and the ART1 algorithm; in Section IV we describe our 
proposed approach to deal with clustering in the computer 
forensics domain; in Section V we detail the experiments; 
and finally, in Section VI we present the discussion and 
conclusions of our work.
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2. Related Work
Document clustering of forensic text corpora has been 

done by researchers using different techniques and models, 
such as Kohonen’s Self-Organizing Maps (SOM) [9] and the 
k-means algorithm [20]. Beebe and Dietrich in [8] proposed 
a new process model for text string searches that advocated 
the use of machine learning techniques, clustering being one 
of them.

Beebe and Clark in [9] used the Scalable Self-Organizing 
Map (SSOM) algorithm, which takes advantage of the 
sparseness of input vectors, to cluster search hits returned 
from queries to computer forensic text corpora. The results 
were reported to be promising. Beebe researched the subject 
further in a PhD thesis [21], where some issues and limitations 
that warrant further discussion are described.

1.	 First, the author performed searches at a physical 
level, completely skipping the file system. This 
approach is likely to miss documents that are not 
stored as plain text (Microsoft Office 2007 user files, 
PDF, among others), or stored in noncontiguous 
areas of the media being examined.

2.	 Second, the author also argues against full-text 
indexing, and states that “Simply put, the startup 
cost for index creation is prohibitive – the return 
on investment is too low to make full text indexing 
worthwhile.” Both FTK and EnCase, two widely used 
computer forensic software packages [5], enable full-
text indexing by default during pre-processing. This 
step is known to be resource-intensive, but by no 
means prohibitive. No evidence of said unfeasibility 
is presented.

3.	 Third, the user was required to input the size of the 
2-dimensional map that would display the clusters. 
The work does not mention how to determine or 
even suggest this value. The author states that “… the 
primary purpose of this research was to ascertain the 
feasibility of clustering digital forensic text string search 
results and draw general conclusions regarding possible 
improvement in IR1 effectiveness, studying cluster 
granularity optimization was out of scope”, and follows 
stating that “Future research should experimentally 
examine optimal map and document vector sizes 
given various data set and query characteristics.” The 
present work builds on the ideas discussed on Beebe’s 
research [21].

The approach based on the k-means algorithm required 
the user to input the number of clusters, k, that the algorithm 
would create; Decherchi et al. [20] chose k = 10, stating that 
“… this choice was guided by the practical demand of obtaining 
a limited number of informative groups,” and clustered the 
whole forensic text corpus they chose for their experiment. 
After the clustering was done, the words considered to 
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be the most descriptive among the twenty most frequent 
words present in the documents belonging to each cluster 
were assessed and the results were reported to range from 
“interesting” to “extremely interesting”. The authors did not 
discuss the technical details of the implementation.

As far as we are concerned, no other work related to 
document clustering of forensic text corpora was found; 
although there is a very large number of published works 
about document clustering. L. Massey published several 
research papers [22,23,24] and a PhD thesis [25] on the 
subject of document clustering using the ART1 algorithm.

3. Adaptive Resonance Theory
Adaptive Resonance Theory (ART), inspired by human 

cognitive information processing, was introduced by 
Grossberg in 1976 [26]. It describes a number of self-
organizing artificial neural networks that employ an 
unsupervised learning process, and one of its main goals is 
to overcome the stability/plasticity dilemma. The stability/
plasticity dilemma lies in that a system is desired which is able 
to learn new patterns without forgetting what it has already 
learned. A number of other previous neural network models 
are not plastic because they cannot learn from new patterns 
after the network is first trained. They are also not stable 
because even though they can be retrained from scratch 
to process new patterns, they do so at the cost of quickly 
forgetting old knowledge.

ART neural networks, on the other hand, are plastic 
because they can dynamically learn new patterns even after 
the network has stabilized, and are also stable since they 
preserve knowledge about past input patterns as new ones 
are presented. Each cluster corresponds to an output neuron, 
and the algorithm creates and updates them on-the-fly as 
required by the input data, meaning the network is self-
organizing. These properties make ART neural networks 
suitable for incremental clustering of data. The present work 
focuses on document clustering with ART1, an ART neural 
network designed to work with binary input vectors.

The foundations of ART are laid out in detail in a large 
number of publications by Grossberg, Carpenter and 
other researchers [27,28]. A clear and concise introduction 
that skips the mathematical underpinnings of ART and 
concentrates on the architecture of the network and the 
operation of the algorithm can be found in [29].

A. ART1 architecture
Fig. 1 presents a typical ART architecture using a block 

diagram. There are two main components, the attentional and 
orienting subsystems. The attentional subsystem contains, 
among other components, two layers of neurons, F1 and 
F2. The comparison layer F1 has N input neurons, and the 
recognition layer F2 has M output neurons. N is the input size, 
i.e. the number of input patterns (in this case, documents).  
M is the number of clusters produced by the algorithm, and 
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is calculated dynamically. Neurons are fully connected with 
both feed-forward and feedback weighted links. Th e orienting 
subsystem contains the reset layer for controlling the overall 
dynamics of the attentional subsystem.

Figure 1. ART1 architecture [28]

Binary input patterns are presented to the F1 layer, and 
the feed-forward links present the inputs to the F2 layer. 
Th e feedback links from F2 to F1 store the prototype vectors, 
i.e. the vectors that represent the clusters embodied by the 
output neurons. Th e output neurons (clusters) in the F2 
layer compete for activation. Th e neuron with maximum 
activation takes the value 1 and inhibits the others, which 
take the value 0. If the input presented in F1 and the winning 
neuron in F2 “match”, i.e. share enough dimensions in 
common, resonance occurs; reset occurs otherwise and 
the search is repeated. If no matching prototype vector is 
found, a new cluster is created based on the input vector. 
An input vector and a prototype vector are said to match if 
the vigilance test is passed. Vigilance (ρ) is a dimensionless 
parameter that dictates how close an input must be to a 
prototype vector for resonance to occur.

B. ART1 algorithm
Th e original work about ART1 describes its architecture 

and operation by means of diff erential equations, and does 
not supply a reference implementation [28]. Fig. 2 presents 
the Cluster-ART-I algorithm described in [30] and cited 
in [27,31], with additional remarks for clarifi cation. Th is 
algorithm is used in this paper as the basis of the soft ware 
package developed and validated in the experiments. Th e 
Cluster-ART-I algorithm will be referred to simply as ART1 
algorithm from now on.

Th e ART1 algorithm groups binary input vectors into 
categories or clusters. Each cluster has a prototype vector, 
and each input vector is classifi ed into the cluster that has the 
nearest prototype vector. Th e algorithm will create as many 
clusters as required by data. Th e number of clusters and their 
size depend on two parameters,  β and ρ.

β is the choice parameter, a small positive number that is 
added to the denominator in step 2 of the algorithm in order 
to avoid division by zero should it happen that ||Ti||1 = 0 . 
Th e limit β → 0 is called the conservative limit because small 
values of β tend to minimize recoding, i.e. updating of the 
prototype vectors, during the learning process [27]. β is used 
in the category choice function described in step 2 and also in 
the distance test in step 3 of the algorithm.

Figure 2. ART1 algorithm [30]

ρ is the vigilance parameter, 0 < ρ ≤ 1, that tests the similarity 
between the input and prototype vectors in step 3’ of the 
algorithm and directly infl uences the number of clusters the 
algorithm creates, as well as their size. Low vigilance leads to 
coarse-grained generalization and abstract prototype vectors 
that represent many input vectors, the result being fewer 
clusters containing each a larger number of input vectors. 
High vigilance leads to fi ne-grained generalization and 
prototypes that represent fewer input vectors, the result being 
more clusters containing each a smaller number of input 
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vectors. Though ART1 is unsupervised, the user is allowed 
a limited amount of supervision by means of tuning the 
vigilance parameter. Such tuning is useful when the number 
and size of the clusters is considered too small or too large.

It is stated in [27] that both Fuzzy ART (another member 
of the ART family) and ART1 take three parameters: a choice 
parameter α, a learning rate β, 0 < β ≤ 1, and vigilance ρ; 
although [30] mentions only two, choice parameter β and 
vigilance ρ. Even though each work describes a different 
set of parameters for the ART1 algorithm, it is the same 
algorithm. This is because the ART1 algorithm described 
in [27] implements the fast learning mode described in [28], 
where the learning rate β is set to 1, and uses the symbol β for 
the choice parameter instead of α.

4. Proposed Approach
The proposed approach consists of the development of a 

software package and a validation method used during the 
experiments with a real world case.

A. Software package
Two command line programs were produced. The first 

one was the indexer, whose task was to traverse a file system 
exposed from a mounted image file looking for: (i) all 
Microsoft Office user files (.doc, .docx, .xls, .xlsx, .ppt, .pptx, 
.pps, .ppsx); (ii) text files (.txt and .rtf) files; (iii) PDF files 
(.pdf); (iv) HTML and XML files (.htm, .html and .xml). The 
program also runs the following pre-processing steps:

•	 Extract text from structured documents.
•	 Look for text in Portuguese; documents where no 

text in Portuguese was found were discarded.
•	 Remove stopwords from the extracted text.
•	 Tokenize and stem the extracted text.
•	 Build an index with the metadata from each file 

and its respective extracted text for later query and 
retrieval.

The second program was the searcher, whose task was to 
query the index and present the results i.e. the documents 
that matched the query. Upon execution, the program would 
return up to 1,000 documents in the index that matched 
the query expression, cluster them together with the ART1 
algorithm, and then write a number of HTML files presenting 
all clusters and their respective documents along with the most 
frequent 20 terms (based in [20]) present in the documents 
belonging to each cluster, which allow to examiner to obtain a 
general picture of the documents in each cluster. Clusters are 
numbered sequentially and have no labels other than their 
numbers. The searcher program was written in Java and was 
based on the source code available in [31]. The program took 
three parameters: the first and the second were mandatory 
– case number and query expression, while the third was an 
optional vigilance value.

After the searcher program is executed and retrieves the 
documents that match the query expression and clusters 

them, the clustering solution must be compared to the gold 
standard classes defined by the domain experts (as presented 
in Section D of IV).

B. Comparison of clusterings
This description in based on [32]. Let D={d1,d2,…,dn} 

be the set of documents N matching the query expression, 
and  U={u1,u2,…,uR} and V={v1,v2,…,vC} two partitions 
of the documents in  D such that  and 

 for  and 
. Partition U has R subsets (clusters) and represents a 
clustering solution, and partition V has C subsets (classes) 
and represents the gold standard. Let d1 and d2 be a pair of 
documents chosen from D. The total number of possible 
combinations of pairs in D is , and the pairs can be of four 
different types:

•	 a – objects in a pair are placed in the same cluster in  
U and in the same class in V 

•	 b – objects in a pair are placed in the same cluster in  
U and in different classes in V

•	 c – objects in a pair are placed in different clusters in  
U and in the same class in V

•	 d – objects in a pair are placed in different clusters in  
U and in different classes in V

A contingency table can be computed to indicate overlap 
between U and V.

TABLE II. Contingency Table for Comparing Partitions U and V

In Table II nij represents the number of documents that 
were clustered in the ith subset (cluster) of partition U and 
in the jth subset (class) of partition V. The values of a, b, 
c and d can be computed from the nij values present in 
Table II.

Intuitively, a and d can be interpreted as indicators of 
agreement between U and V, while b and c can be interpreted 
as indicators of disagreement. Several indices based on these 
four types of pairs have been proposed in the literature. 
This study uses an information theoretic based measure, the 
Normalized Mutual Information (NMI).

C. Normalized Mutual Information
The Normalized Mutual Information (NMI) is a measure 

with a strong background rooted in Information Theory that 
gives a sound indication of the information shared between a 
pair of clusterings [33]. Let I(U,V) be the Mutual Information 
(MI) between the random variables described by clusterings 
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U and V, and H(U) be the entropy2 of the random variable 
described by the cluster labeling U. The Mutual Information, 
or MI, defined by I(U,V) is a metric or distance. As it has no 
upper bound, a normalized version that ranges between 0 
and 1 is desirable [33]. The NMI is defined as presented in 
Equation 1, which needs to be estimated from the sampled 
quantities provided by the clusterings. To meet this need, the 
normalized mutual information estimate ø(NMI)  presented in 
Equation 2 is used [33].

The NMI has a fixed lower bound of 0, and a fixed upper 
bound of 1. It takes the value of 1 when two clusterings 
are identical, and takes the value of 0 when they are 
independent, i.e. they do not share any information about 
each other.

D. Validation method
The search results for each query expression are classified 

by a human expert, i.e. a domain specialist, to form the classes 
that represent the gold standard. Then the clusters produced 
by the software package are compared to the classes, and 
ø(NMI) is computed. Since ø(NMI) is a quantitative measure, 
a subjective evaluation will also be performed by another 
domain specialist, who will assess the produced clusters to 
define whether they are “good” and “useful”; in other words, 
judge whether the algorithm managed to group similar 
documents and give a good general picture of their contents.

5. Experiments
An image file acquired from the hard drive of a computer 

seized by a law enforcement agency during the course of an 
actual investigation was processed. The computer contained 
a single hard drive and was seized while executing a search 
warrant for collecting evidence of fraud in public purchasing 
contracts. The hard drive contained a single NTFS file system.

A. Document count
Table III presents the number of documents which were 

used in our experiments, categorized by document type.

2	 A clear and concise review of the fundamental concepts involved can be 
found in [34].

TABLE III.  Total Number of Documents

File type # of documents
Microsoft Office user files (.doc, .docx, 
.xls, .xlsx, .ppt, .pptx, .pps, .ppsx) 701

Text files (.txt,.rtf) 79

PDF files (.pdf) 400

HTML and XML (.htm, .html,.xml) 2,818

B. ART1 parameters
As presented in Section B of III, the choice parameter β 

was set to the small value of 0.01 in step 2 of the algorithm as 
described in Fig. 2.

The default vigilance parameter was set to ρ = 500/M. This 
value was set as a starting point as discussed in [25], where 
it is suggested that the value for the minimal useful vigilance 
(ρmin) as ρmin=1/M for a document collection with a maximum 
dimensionality of 2,600, and in practice much less (500 to 
800). Such a value is not adequate for the purpose of this 
study because no dimensionality reduction techniques other 
than stopword removal and stemming are performed, which 
causes search results returned by queries to possess high 
dimensionality (>3,000). Although the default vigilance was 
calculated at runtime, it was only used as a suggestion and 
the user could quickly review the produced clusters and run 
the software again as many times as desired, supplying a value 
for vigilance, in order to find clusters that the user considers 
more adequate.

C. Results
Table IV lists the results. Company and individual names 

were masked to protect their rights. Tables V and VI are the 
contingency tables for each query expression. Cells whose 
value is 0 were left blank to improve legibility.

TABLE IV. Results

Query 
expression # of results # of classes # of clusters ø(NMI) ρ

Person#1 90 15 15 0.831 0.05

Company#1 325 23 26 0.7473 0.08

 

TABLE V. Contingency Table for Query Expression “Person#1”

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Sums

1 23 23

2 1 1 3 5
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Sums

3 1 1 2

4 1 1

5 2 2

6 4 1 5

7 7 1 8

8 15 15

9 2 3 5

10 10 10

11 5 5

12 1 1 2

13 1 2 1 4

14 1 1 2

15 1 1

Sums 1 1 1 10 1 5 23 1 2 19 1 3 18 3 1 90

TABLE VI. Contingency Table for Query Expression “Company#1”

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Sums

1 86 4 90

2 4 1 5

3 2 2

4 3 1 4

5 2 1 3

6 1 1 2

7 1 2 3

8 1 1 1 3

9 21 1 22

10 1 6 7

11 1 2 3

12 1 2 3

13 80 1 81

14 6 2 1 9

15 1 2 1 4

16 10 10

17 1 16 6 23

18 2 3 5

19 2 1 3

20 11 11

21 4 4

22 1 1 2
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6. Discussion and Conclusions
The results of the experiments raise a number of topics for 

discussion and present opportunities for future work. Some 
conclusions are also drawn.

A. Discussion
At first, the searcher program generated 20 clusters for 

query expression “Person#1” with automatically calcula-
ted vigilance ρ=0.107089. In order to find out how close the 
ART1 algorithm could get to the gold standard of 15 classes 
for this particular case and query expression, vigilance was 
decreased until the searcher program output 15 clusters. Ta-
ble IV presents the final vigilance of 0.05 which resulted in 
ϕ(NMI)=0.831. Considering that the upper bound for NMI is 
1, this can be considered a good result – there is high agree-
ment between the clustering solution and the gold standard. 
This agreement is portrayed in Table V, where the dispersion 
of documents between clusters and classes is arguably small.

In the case of query expression “Company#1”, tuning of 
the vigilance was based on the subjective evaluation by the 
domain specialist of document labels (file names) in each 
cluster. ϕ(NMI) is lower than with query expression “Person#1”, 
but still high at 0.7473. As for the subjective evaluation, the 
domain specialist considered the generated clusters “good” 
and “useful”.

Even in the cases where the documents belonging to a par-
ticular class were dispersed among several clusters, they were 
not randomly fragmented between clusters, but rather were 
mostly concentrated on a small number of clusters. One pos-
sible explanation for this is that the documents, although be-
longing to the same class, were not considered similar enough 
to be included in the same cluster by the clustering algorithm. 
This was verified to be true when two documents that were 
classified in class “CONTRACTS” had few words in common 
other than the word “CONTRACT” in their first page and file 
names; the specialist would put them in the same class, even 
though their content was very different.

The domain specialist complained that the searcher pro-
gram did not give descriptive labels to the clusters, but rather 
just displayed a number and the labels (file names) of the do-
cuments. Cluster labeling is a research topic by itself and was 
not addressed in this work.

Many of the returned documents were structured (.doc, 
.docx) rather than plain text (.txt, .html). These would possi-

bly not be found if the approach described in Section II, item 
1 was followed.

B. Conclusions
Unfortunately, we found little previous research in document 

clustering of forensic text corpora to compare results, but the 
work of [21] compared to our results shows that:

•	 It is possible to generate good clusters without 
the need to specify runtime parameters (vigilance 
was calculated at runtime and could be tuned if so 
desired).

•	 It is not enough to cluster only results obtained at the 
physical level.

Nevertheless, there is much more investigation to be done 
in this area. The use of the ART1 algorithm was found to 
be feasible and useful for clustering of computer forensic 
documents, but the algorithm should still be improved 
considering the processing time efficiency since the 
document-term matrix is usually very sparse.

This work presented research that is justified in the 
basis that it can be confusing and time-consuming to 
wade through hundreds to thousands of search results 
returned from queries to computer forensic text corpora. 
Document clustering in computer forensic examinations 
using ART1 neural networks was proved to allow forensic 
examiners to quickly and effectively obtain a general 
picture of document contents, leveraging van Rijsbergen’s 
cluster hypothesis.

Although, apart from the use of different techniques, 
nothing can compare to thorough and careful review of each 
search result by a human examiner, document clustering can 
help provide quick insights into the contents of seized media. 
Such a capability can be useful, for example, when the goal is 
to gather intelligence quickly prior to performing a complete 
examination.

As future work we may cite the use of soft and hierarchical 
clustering, the generation of high quality cluster labels, and 
the comparison with other clustering algorithms such as 
SOM, k-means and Expectation-Maximization (EM).
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