
106

Abstract — Computer forensic text corpora are usually very
heterogeneous. While classification, by file type or other criteria,
should be an aid in the exploration of such corpora, it does not
help in the task of thematically grouping together documents.
Adaptive Resonance Theory (ART) describes a number of self-
organizing artificial neural networks that employ an unsupervised
learning process and is specially designed to learn new patterns
without forgetting what it has already learned, overcoming the
important restriction defined by the stability/plasticity dilemma.
In this direction, this paper applies the ART1 algorithm (ART with
binary input vectors) to thematically cluster documents returned
from query tools used with forensic text corpora. Documents that
would previously be presented in a disorganized and often long
list are thematically clustered, giving the examiner a faster and
effective way of obtaining a general picture of document content
during forensic examinations. Our experimental results are
expressive to validate our approach, achieving high agreement
between the clustering solution processed with our software
package and the gold standard defined by domain area experts.

Keywords — ART1; artificial neural networks; computer forensics;
document clustering

1. Introduction
Text is very important in forensic examinations. Computer

forensic text corpora often consist of a very heterogeneous
mix of artifacts, including but not limited to: office suite
documents and spreadsheets, PDF files, email, web browser
and instant messaging history files, and a huge list of text
strings, which are extracted from unallocated and slack space.
It is very common to find all of these types of forensic artifacts
in computers and discrete media seized by law enforcement.
Finding, organizing and analyzing evidence from this diverse
mix of artifacts takes more time and effort than the resources
available, especially considering the never-ending growth of
storage capacity [1].

A. Forensic examinations and forensic text string
searches

After evidence is seized or acquired, examination begins.

DOI: http://dx.doi.org/10.5769/C2011011

A computer forensic examination is a procedure that is both
broad and deep, performed by a specialist that is responsible
and legally accountable for handling the evidence, keeping
the chain of custody and writing a report with his findings.
Depending on the size and complexity of data, an examination
may take a long time to complete. Two techniques commonly
used to speed up examinations are data reduction [2] and
text indexing [3]. Data reduction consists of applying filters
during pre-processing to exclude certain portions of data
that are known to be safely ignorable, usually by means of
querying a hash database, while text indexing consists of
building a text index so that files can be searched quickly after
the pre-processing phase.

The current process of text string searching using computer
forensic tools is basically the same: the forensic examiner inputs
search strings and the application returns a number of search
results, or hits, for the examiner to peruse. It is not uncommon
for text searches to return hundreds to thousands of hits. All hits
must be returned, because the application cannot distinguish
the relevant ones from the irrelevant. The task of reviewing the
hits is subjective in nature and belongs to the domain specia-
list – the examiner. Thus, it becomes critically important for the
application to present hits in such a manner that the examiner
may quickly and efficiently review them. Unfortunately, cur-
rent computer forensic applications at most categorize hits by
file type – a process not much more sophisticated than running
the tool grep on the image file [4]. As storage capacity of seized
computers and media begins to surpass the terabyte range, the
need for better ways of displaying and navigating search hits be-
comes even more apparent. A survey distributed to computer
forensics experts published in 2010 in an MSc thesis [5] found
out that 60.7% of respondents chose “greater efficiency of data
searching” as one of the top 3 main changes in forensics tools
that would enable the examiner to spend less time on a case.
Despite the importance of the research subject, relatively little
research has been done to develop efficient searching mecha-
nisms with adequate presentation methods for the exploration
of computer forensic text corpora [6, 7, 8, 9,10,11].

B. Document clustering
Text classification or text categorization is the process of

assigning text documents to predefined classes or labels. As

Computer Forensic Document Clustering with
ART1 Neural Networks*

Georger Rommel Ferreira de Araújo1, and Célia Ghedini Ralha2

(1) Technical-Scientific Unit, Federal Police Department (DPF), Juazeiro do Norte, Brazil,
rommel dot grfa at dpf dot gov dot br

(2) Computer Science Department, University of Brasília (UnB), Brasília, Brazil,
ghedini at cic dot unb dot br

*	 This work was sponsored by the Ministry of Justice of Brazil under the
PRONASCI Program.

107

the classes and the training instances that belong to them are
known beforehand, the classification problem is a task of su-
pervised learning [12]. The process of document clustering
aims to discover natural groupings (clusters) so that docu-
ments within a cluster are similar to one another but are dis-
similar to documents in other clusters [13]. Clustering differs
from classification in that it assumes no prior knowledge of
categories or the existence of a training set, and as such it is
a task of unsupervised learning. Clustering may be applied
in scenarios where classification is inadequate or impossible.
This kind of scenario is commonplace in computer forensic
examinations, where the knowledge obtained in a case usu-
ally cannot be reused in other unrelated cases.

There exist many clustering algorithms that differ in sev-
eral aspects, among which one may cite: computational com-
plexity, cluster quality, and sensitivity to the order of presen-
tation of the inputs. While it is desirable to build the best pos-
sible clusters, there is no way to define the best clusters, since
there are many correct, context-dependent ways to arrange
the documents for a given corpus. Clustering quality may be
evaluated by means of internal and external criteria. An in-
ternal criterion measures intra-cluster similarity (documents
belonging to the same cluster should be similar) and inter-
cluster similarity (documents belonging to different clusters
should be dissimilar). While good scores on an internal crite-
rion are desirable, they do not necessarily translate into good
effectiveness in an application [14]. An external criterion, on
the other hand, measures how well the clustering solution
matches a set of classes produced by human judges, or gold
standard. Thus, it is desirable for a clustering algorithm to
produce clusters that approximate the gold standard classes.

Many clustering algorithms take vectors as input. Accord-
ing to [15], the vector space model can be used to represent
text documents as vectors of terms. The document collection
is represented as a matrix where each document is a row and
each term is a column representing a different dimension. In
this way, a document collection containing N documents and
M terms can be represented by the N x M matrix presented
in Table I, where anm is an attribute that represents the term tm
frequency of term dn in document . This is also known as the
bag-of-words model, or simply BOW.

For the purpose of the present work, binary input vectors
will be used. The matrix may be modeled as a binary inci-
dence matrix, where anm is 1 if term tm occurs in document dn
and is 0 otherwise.

TABLE I. Bag-Of-Words model

Even moderately sized document collections often have
several tens of thousands of different terms, with each

document containing relatively few terms. The matrix is thus
very sparse. This poses a problem for clustering algorithms
because considerable resources are spent to represent
and perform calculations on a large volume of data that is
mostly empty except for a relatively small percentage of
terms in each document. This problem is known as the curse
of dimensionality, and several reduction techniques have
been proposed to deal with it in the domain of document
clustering. These techniques aim to reduce the computational
complexity of document clustering algorithms, or at least
their running time, while keeping the quality and relevance
of the output.

C. Search result clustering
A common representation of search results is a simple

list the user must scan from top to bottom until she finds
the information that addresses her information needs. In
the context of computer forensics examinations where each
search request may return hundreds to thousands of results,
it can be confusing and time-consuming to wade through
all of them.

Document clustering can also be applied to a subset of the
document collection. Search result clustering can be used to
cluster the documents that were returned in response to a
query. In [16] van Rijsbergen presents the cluster hypothesis
which states that “Closely associated documents tend to be
relevant to the same requests”. In other words, if there is a
document from a cluster that is relevant to a search request,
then it is likely that other documents from the same cluster
are also relevant. This is because clustering puts together
documents that share many terms [14]. Thus, if the searching
results are clustered, similar documents will appear together
in coherent groups, which are arguably easier to scan than
a disorganized list. If the cluster hypothesis holds, when the
examiner finds a cluster where the first few documents are
relevant to the query then the whole cluster can be flagged
for more detailed analysis; conversely, a cluster where the
first few documents are judged irrelevant can be discarded
right away.

Search result clustering has been found to offer promising
results, both in traditional text-based information retrieval
and web-based information retrieval [17,18,19]. This paper
focuses on the use of ART1 clustering algorithm to apply to
search results returned from queries to computer forensic
text corpora. The scenario investigated is that of hard
clustering, where each document is a member of exactly
one cluster.

The rest of this paper is organized as follows: in Section II
we present related research work; in Section III we discuss
the Adaptive Resonance Theory with the architecture
and the ART1 algorithm; in Section IV we describe our
proposed approach to deal with clustering in the computer
forensics domain; in Section V we detail the experiments;
and finally, in Section VI we present the discussion and
conclusions of our work.

108

2. Related Work
Document clustering of forensic text corpora has been

done by researchers using different techniques and models,
such as Kohonen’s Self-Organizing Maps (SOM) [9] and the
k-means algorithm [20]. Beebe and Dietrich in [8] proposed
a new process model for text string searches that advocated
the use of machine learning techniques, clustering being one
of them.

Beebe and Clark in [9] used the Scalable Self-Organizing
Map (SSOM) algorithm, which takes advantage of the
sparseness of input vectors, to cluster search hits returned
from queries to computer forensic text corpora. The results
were reported to be promising. Beebe researched the subject
further in a PhD thesis [21], where some issues and limitations
that warrant further discussion are described.

1.	 First, the author performed searches at a physical
level, completely skipping the file system. This
approach is likely to miss documents that are not
stored as plain text (Microsoft Office 2007 user files,
PDF, among others), or stored in noncontiguous
areas of the media being examined.

2.	 Second, the author also argues against full-text
indexing, and states that “Simply put, the startup
cost for index creation is prohibitive – the return
on investment is too low to make full text indexing
worthwhile.” Both FTK and EnCase, two widely used
computer forensic software packages [5], enable full-
text indexing by default during pre-processing. This
step is known to be resource-intensive, but by no
means prohibitive. No evidence of said unfeasibility
is presented.

3.	 Third, the user was required to input the size of the
2-dimensional map that would display the clusters.
The work does not mention how to determine or
even suggest this value. The author states that “… the
primary purpose of this research was to ascertain the
feasibility of clustering digital forensic text string search
results and draw general conclusions regarding possible
improvement in IR1 effectiveness, studying cluster
granularity optimization was out of scope”, and follows
stating that “Future research should experimentally
examine optimal map and document vector sizes
given various data set and query characteristics.” The
present work builds on the ideas discussed on Beebe’s
research [21].

The approach based on the k-means algorithm required
the user to input the number of clusters, k, that the algorithm
would create; Decherchi et al. [20] chose k = 10, stating that
“… this choice was guided by the practical demand of obtaining
a limited number of informative groups,” and clustered the
whole forensic text corpus they chose for their experiment.
After the clustering was done, the words considered to

1	 Information Retrieval

be the most descriptive among the twenty most frequent
words present in the documents belonging to each cluster
were assessed and the results were reported to range from
“interesting” to “extremely interesting”. The authors did not
discuss the technical details of the implementation.

As far as we are concerned, no other work related to
document clustering of forensic text corpora was found;
although there is a very large number of published works
about document clustering. L. Massey published several
research papers [22,23,24] and a PhD thesis [25] on the
subject of document clustering using the ART1 algorithm.

3. Adaptive Resonance Theory
Adaptive Resonance Theory (ART), inspired by human

cognitive information processing, was introduced by
Grossberg in 1976 [26]. It describes a number of self-
organizing artificial neural networks that employ an
unsupervised learning process, and one of its main goals is
to overcome the stability/plasticity dilemma. The stability/
plasticity dilemma lies in that a system is desired which is able
to learn new patterns without forgetting what it has already
learned. A number of other previous neural network models
are not plastic because they cannot learn from new patterns
after the network is first trained. They are also not stable
because even though they can be retrained from scratch
to process new patterns, they do so at the cost of quickly
forgetting old knowledge.

ART neural networks, on the other hand, are plastic
because they can dynamically learn new patterns even after
the network has stabilized, and are also stable since they
preserve knowledge about past input patterns as new ones
are presented. Each cluster corresponds to an output neuron,
and the algorithm creates and updates them on-the-fly as
required by the input data, meaning the network is self-
organizing. These properties make ART neural networks
suitable for incremental clustering of data. The present work
focuses on document clustering with ART1, an ART neural
network designed to work with binary input vectors.

The foundations of ART are laid out in detail in a large
number of publications by Grossberg, Carpenter and
other researchers [27,28]. A clear and concise introduction
that skips the mathematical underpinnings of ART and
concentrates on the architecture of the network and the
operation of the algorithm can be found in [29].

A. ART1 architecture
Fig. 1 presents a typical ART architecture using a block

diagram. There are two main components, the attentional and
orienting subsystems. The attentional subsystem contains,
among other components, two layers of neurons, F1 and
F2. The comparison layer F1 has N input neurons, and the
recognition layer F2 has M output neurons. N is the input size,
i.e. the number of input patterns (in this case, documents).
M is the number of clusters produced by the algorithm, and

109

is calculated dynamically. Neurons are fully connected with
both feed-forward and feedback weighted links. Th e orienting
subsystem contains the reset layer for controlling the overall
dynamics of the attentional subsystem.

Figure 1. ART1 architecture [28]

Binary input patterns are presented to the F1 layer, and
the feed-forward links present the inputs to the F2 layer.
Th e feedback links from F2 to F1 store the prototype vectors,
i.e. the vectors that represent the clusters embodied by the
output neurons. Th e output neurons (clusters) in the F2
layer compete for activation. Th e neuron with maximum
activation takes the value 1 and inhibits the others, which
take the value 0. If the input presented in F1 and the winning
neuron in F2 “match”, i.e. share enough dimensions in
common, resonance occurs; reset occurs otherwise and
the search is repeated. If no matching prototype vector is
found, a new cluster is created based on the input vector.
An input vector and a prototype vector are said to match if
the vigilance test is passed. Vigilance (ρ) is a dimensionless
parameter that dictates how close an input must be to a
prototype vector for resonance to occur.

B. ART1 algorithm
Th e original work about ART1 describes its architecture

and operation by means of diff erential equations, and does
not supply a reference implementation [28]. Fig. 2 presents
the Cluster-ART-I algorithm described in [30] and cited
in [27,31], with additional remarks for clarifi cation. Th is
algorithm is used in this paper as the basis of the soft ware
package developed and validated in the experiments. Th e
Cluster-ART-I algorithm will be referred to simply as ART1
algorithm from now on.

Th e ART1 algorithm groups binary input vectors into
categories or clusters. Each cluster has a prototype vector,
and each input vector is classifi ed into the cluster that has the
nearest prototype vector. Th e algorithm will create as many
clusters as required by data. Th e number of clusters and their
size depend on two parameters, β and ρ.

β is the choice parameter, a small positive number that is
added to the denominator in step 2 of the algorithm in order
to avoid division by zero should it happen that ||Ti||1 = 0 .
Th e limit β → 0 is called the conservative limit because small
values of β tend to minimize recoding, i.e. updating of the
prototype vectors, during the learning process [27]. β is used
in the category choice function described in step 2 and also in
the distance test in step 3 of the algorithm.

Figure 2. ART1 algorithm [30]

ρ is the vigilance parameter, 0 < ρ ≤ 1, that tests the similarity
between the input and prototype vectors in step 3’ of the
algorithm and directly infl uences the number of clusters the
algorithm creates, as well as their size. Low vigilance leads to
coarse-grained generalization and abstract prototype vectors
that represent many input vectors, the result being fewer
clusters containing each a larger number of input vectors.
High vigilance leads to fi ne-grained generalization and
prototypes that represent fewer input vectors, the result being
more clusters containing each a smaller number of input

110

vectors. Though ART1 is unsupervised, the user is allowed
a limited amount of supervision by means of tuning the
vigilance parameter. Such tuning is useful when the number
and size of the clusters is considered too small or too large.

It is stated in [27] that both Fuzzy ART (another member
of the ART family) and ART1 take three parameters: a choice
parameter α, a learning rate β, 0 < β ≤ 1, and vigilance ρ;
although [30] mentions only two, choice parameter β and
vigilance ρ. Even though each work describes a different
set of parameters for the ART1 algorithm, it is the same
algorithm. This is because the ART1 algorithm described
in [27] implements the fast learning mode described in [28],
where the learning rate β is set to 1, and uses the symbol β for
the choice parameter instead of α.

4. Proposed Approach
The proposed approach consists of the development of a

software package and a validation method used during the
experiments with a real world case.

A. Software package
Two command line programs were produced. The first

one was the indexer, whose task was to traverse a file system
exposed from a mounted image file looking for: (i) all
Microsoft Office user files (.doc, .docx, .xls, .xlsx, .ppt, .pptx,
.pps, .ppsx); (ii) text files (.txt and .rtf) files; (iii) PDF files
(.pdf); (iv) HTML and XML files (.htm, .html and .xml). The
program also runs the following pre-processing steps:

•	 Extract text from structured documents.
•	 Look for text in Portuguese; documents where no

text in Portuguese was found were discarded.
•	 Remove stopwords from the extracted text.
•	 Tokenize and stem the extracted text.
•	 Build an index with the metadata from each file

and its respective extracted text for later query and
retrieval.

The second program was the searcher, whose task was to
query the index and present the results i.e. the documents
that matched the query. Upon execution, the program would
return up to 1,000 documents in the index that matched
the query expression, cluster them together with the ART1
algorithm, and then write a number of HTML files presenting
all clusters and their respective documents along with the most
frequent 20 terms (based in [20]) present in the documents
belonging to each cluster, which allow to examiner to obtain a
general picture of the documents in each cluster. Clusters are
numbered sequentially and have no labels other than their
numbers. The searcher program was written in Java and was
based on the source code available in [31]. The program took
three parameters: the first and the second were mandatory
– case number and query expression, while the third was an
optional vigilance value.

After the searcher program is executed and retrieves the
documents that match the query expression and clusters

them, the clustering solution must be compared to the gold
standard classes defined by the domain experts (as presented
in Section D of IV).

B. Comparison of clusterings
This description in based on [32]. Let D={d1,d2,…,dn}

be the set of documents N matching the query expression,
and U={u1,u2,…,uR} and V={v1,v2,…,vC} two partitions
of the documents in D such that and

 for and
. Partition U has R subsets (clusters) and represents a
clustering solution, and partition V has C subsets (classes)
and represents the gold standard. Let d1 and d2 be a pair of
documents chosen from D. The total number of possible
combinations of pairs in D is , and the pairs can be of four
different types:

•	 a – objects in a pair are placed in the same cluster in
U and in the same class in V

•	 b – objects in a pair are placed in the same cluster in
U and in different classes in V

•	 c – objects in a pair are placed in different clusters in
U and in the same class in V

•	 d – objects in a pair are placed in different clusters in
U and in different classes in V

A contingency table can be computed to indicate overlap
between U and V.

TABLE II. Contingency Table for Comparing Partitions U and V

In Table II nij represents the number of documents that
were clustered in the ith subset (cluster) of partition U and
in the jth subset (class) of partition V. The values of a, b,
c and d can be computed from the nij values present in
Table II.

Intuitively, a and d can be interpreted as indicators of
agreement between U and V, while b and c can be interpreted
as indicators of disagreement. Several indices based on these
four types of pairs have been proposed in the literature.
This study uses an information theoretic based measure, the
Normalized Mutual Information (NMI).

C. Normalized Mutual Information
The Normalized Mutual Information (NMI) is a measure

with a strong background rooted in Information Theory that
gives a sound indication of the information shared between a
pair of clusterings [33]. Let I(U,V) be the Mutual Information
(MI) between the random variables described by clusterings

111

U and V, and H(U) be the entropy2 of the random variable
described by the cluster labeling U. The Mutual Information,
or MI, defined by I(U,V) is a metric or distance. As it has no
upper bound, a normalized version that ranges between 0
and 1 is desirable [33]. The NMI is defined as presented in
Equation 1, which needs to be estimated from the sampled
quantities provided by the clusterings. To meet this need, the
normalized mutual information estimate ø(NMI) presented in
Equation 2 is used [33].

The NMI has a fixed lower bound of 0, and a fixed upper
bound of 1. It takes the value of 1 when two clusterings
are identical, and takes the value of 0 when they are
independent, i.e. they do not share any information about
each other.

D. Validation method
The search results for each query expression are classified

by a human expert, i.e. a domain specialist, to form the classes
that represent the gold standard. Then the clusters produced
by the software package are compared to the classes, and
ø(NMI) is computed. Since ø(NMI) is a quantitative measure,
a subjective evaluation will also be performed by another
domain specialist, who will assess the produced clusters to
define whether they are “good” and “useful”; in other words,
judge whether the algorithm managed to group similar
documents and give a good general picture of their contents.

5. Experiments
An image file acquired from the hard drive of a computer

seized by a law enforcement agency during the course of an
actual investigation was processed. The computer contained
a single hard drive and was seized while executing a search
warrant for collecting evidence of fraud in public purchasing
contracts. The hard drive contained a single NTFS file system.

A. Document count
Table III presents the number of documents which were

used in our experiments, categorized by document type.

2	 A clear and concise review of the fundamental concepts involved can be
found in [34].

TABLE III. Total Number of Documents

File type # of documents
Microsoft Office user files (.doc, .docx,
.xls, .xlsx, .ppt, .pptx, .pps, .ppsx) 701

Text files (.txt,.rtf) 79

PDF files (.pdf) 400

HTML and XML (.htm, .html,.xml) 2,818

B. ART1 parameters
As presented in Section B of III, the choice parameter β

was set to the small value of 0.01 in step 2 of the algorithm as
described in Fig. 2.

The default vigilance parameter was set to ρ = 500/M. This
value was set as a starting point as discussed in [25], where
it is suggested that the value for the minimal useful vigilance
(ρmin) as ρmin=1/M for a document collection with a maximum
dimensionality of 2,600, and in practice much less (500 to
800). Such a value is not adequate for the purpose of this
study because no dimensionality reduction techniques other
than stopword removal and stemming are performed, which
causes search results returned by queries to possess high
dimensionality (>3,000). Although the default vigilance was
calculated at runtime, it was only used as a suggestion and
the user could quickly review the produced clusters and run
the software again as many times as desired, supplying a value
for vigilance, in order to find clusters that the user considers
more adequate.

C. Results
Table IV lists the results. Company and individual names

were masked to protect their rights. Tables V and VI are the
contingency tables for each query expression. Cells whose
value is 0 were left blank to improve legibility.

TABLE IV. Results

Query
expression # of results # of classes # of clusters ø(NMI) ρ

Person#1 90 15 15 0.831 0.05

Company#1 325 23 26 0.7473 0.08

TABLE V. Contingency Table for Query Expression “Person#1”

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Sums

1 23 23

2 1 1 3 5

112

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Sums

3 1 1 2

4 1 1

5 2 2

6 4 1 5

7 7 1 8

8 15 15

9 2 3 5

10 10 10

11 5 5

12 1 1 2

13 1 2 1 4

14 1 1 2

15 1 1

Sums 1 1 1 10 1 5 23 1 2 19 1 3 18 3 1 90

TABLE VI. Contingency Table for Query Expression “Company#1”

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Sums

1 86 4 90

2 4 1 5

3 2 2

4 3 1 4

5 2 1 3

6 1 1 2

7 1 2 3

8 1 1 1 3

9 21 1 22

10 1 6 7

11 1 2 3

12 1 2 3

13 80 1 81

14 6 2 1 9

15 1 2 1 4

16 10 10

17 1 16 6 23

18 2 3 5

19 2 1 3

20 11 11

21 4 4

22 1 1 2

113

6. Discussion and Conclusions
The results of the experiments raise a number of topics for

discussion and present opportunities for future work. Some
conclusions are also drawn.

A. Discussion
At first, the searcher program generated 20 clusters for

query expression “Person#1” with automatically calcula-
ted vigilance ρ=0.107089. In order to find out how close the
ART1 algorithm could get to the gold standard of 15 classes
for this particular case and query expression, vigilance was
decreased until the searcher program output 15 clusters. Ta-
ble IV presents the final vigilance of 0.05 which resulted in
ϕ(NMI)=0.831. Considering that the upper bound for NMI is
1, this can be considered a good result – there is high agree-
ment between the clustering solution and the gold standard.
This agreement is portrayed in Table V, where the dispersion
of documents between clusters and classes is arguably small.

In the case of query expression “Company#1”, tuning of
the vigilance was based on the subjective evaluation by the
domain specialist of document labels (file names) in each
cluster. ϕ(NMI) is lower than with query expression “Person#1”,
but still high at 0.7473. As for the subjective evaluation, the
domain specialist considered the generated clusters “good”
and “useful”.

Even in the cases where the documents belonging to a par-
ticular class were dispersed among several clusters, they were
not randomly fragmented between clusters, but rather were
mostly concentrated on a small number of clusters. One pos-
sible explanation for this is that the documents, although be-
longing to the same class, were not considered similar enough
to be included in the same cluster by the clustering algorithm.
This was verified to be true when two documents that were
classified in class “CONTRACTS” had few words in common
other than the word “CONTRACT” in their first page and file
names; the specialist would put them in the same class, even
though their content was very different.

The domain specialist complained that the searcher pro-
gram did not give descriptive labels to the clusters, but rather
just displayed a number and the labels (file names) of the do-
cuments. Cluster labeling is a research topic by itself and was
not addressed in this work.

Many of the returned documents were structured (.doc,
.docx) rather than plain text (.txt, .html). These would possi-

bly not be found if the approach described in Section II, item
1 was followed.

B. Conclusions
Unfortunately, we found little previous research in document

clustering of forensic text corpora to compare results, but the
work of [21] compared to our results shows that:

•	 It is possible to generate good clusters without
the need to specify runtime parameters (vigilance
was calculated at runtime and could be tuned if so
desired).

•	 It is not enough to cluster only results obtained at the
physical level.

Nevertheless, there is much more investigation to be done
in this area. The use of the ART1 algorithm was found to
be feasible and useful for clustering of computer forensic
documents, but the algorithm should still be improved
considering the processing time efficiency since the
document-term matrix is usually very sparse.

This work presented research that is justified in the
basis that it can be confusing and time-consuming to
wade through hundreds to thousands of search results
returned from queries to computer forensic text corpora.
Document clustering in computer forensic examinations
using ART1 neural networks was proved to allow forensic
examiners to quickly and effectively obtain a general
picture of document contents, leveraging van Rijsbergen’s
cluster hypothesis.

Although, apart from the use of different techniques,
nothing can compare to thorough and careful review of each
search result by a human examiner, document clustering can
help provide quick insights into the contents of seized media.
Such a capability can be useful, for example, when the goal is
to gather intelligence quickly prior to performing a complete
examination.

As future work we may cite the use of soft and hierarchical
clustering, the generation of high quality cluster labels, and
the comparison with other clustering algorithms such as
SOM, k-means and Expectation-Maximization (EM).

Acknowledgments
The authors are very grateful to Prof. Maria das Graças

Volpe Nunes, PhD, for kindly sharing the stopword list used

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Sums

23 7 1 1 2 11

24 1 5 1 2 9

25 2 2

26 4 4

Sums 1 1 80 1 1 4 1 82 1 2 1 2 86 6 1 1 1 10 10 26 1 4 2 325

114

in several research projects at the Núcleo Interinstitucional
de Linguística Computacional (NILC) at the Univerity of São
Paulo. Thanks are also due to Luís Filipe da Cruz Nassif for
suggesting the use of the NMI.

References
[1]	 N. Beebe and J. Clark, “Dealing with terabyte data sets in digital

investigations,” Advances in Digital Forensics 194, pp. 3-16 (2005).
[2]	 N. Beebe and J. Clark, “A hierarchical, objectives-based framework

for the digital investigations process,” Digital Investigation, Volume 2,
Issue 2, June 2005, pp. 147-167 (2005).

[3]	 C. Johansson, “Computer Forensic Text Analysis with Open Source
Software,” MSc thesis, Dept. of Software Engineering and Computer
Science, Blekinge Tekniska Högskola (2003).

[4]	 D. Forte, “The importance of text searches in digital forensics,” Network
Security, 2004, pp. 13 – 15 (2004).

[5]	 N. Kuncik, “Introducing Data Mining to Digital Forensic Investigation
Process,” MSc thesis, UCD School of Computer Science and Informatics,
College of Engineering Mathematical and Physical Sciences, University
College Dublin, Ireland (2010).

[6]	 H. Jee, J. Lee, and D. Hong, “High Speed Bitwise Search for Digital
Forensic System,” World Academy of Science, Engineering and
Technology, 32, pp. 104-107 (2007).

[7]	 J. Lee, “Proposal for Efficient Searching and Presentation in Digital
Forensics,” Third International Conference on Availability, Reliability
and Security, IEEE Computer Society, 0, pp. 1377-1381 (2008).

[8]	 N. Beebe and G. Dietrich, “A new process model for text string
searching,” in Research advances in digital forensics III, Shenoi S,
Craiger P, Eds.. Norwell: Springer; 2007. pp. 73–85.

[9]	 N. Beebe and J. Clark, “Digital forensic text string searching: Improving
information retrieval effectiveness by thematically clustering search
results,” in Digital Investigation, September 2007, vol. 4 (suppl. 1) (2007).

[10]	 M. Schwartz and L. M. Liebrock, “A Term Distribution Visualization
Approach to Digital Forensic String Search,” in Proceedings of the
5th international workshop on Visualization for Computer Security
(VizSec ‘08), John R. Goodall, Gregory Conti, and Kwan-Liu Ma (Eds.).
Springer-Verlag, Berlin, Heidelberg, pp. 36-43. 2008.

[11]	 M. Schwartz, C. Hash, and L. M. Liebrock, “Term distribution
visualizations with Focus+Context,” in Proceedings of the 2009 ACM
symposium on Applied Computing (SAC ‘09). ACM, New York, NY,
USA, pp. 1792-1799. 2009.

[12]	 F. Sebastiani, “Machine learning in automated text categorization,”
ACM Computing Surveys, 34(1), pp. 1–47 (2002).

[13]	 N. O. Andrews and E. A. Fox, “Recent Developments in Document
Clustering,” unpublished, http://eprints.cs.vt.edu/archive/00001000/
(2007).

[14]	 C. D. Manning, P. Raghavan, and H Schütze, Introduction to
Information Retrieval. Cambridge University Press, 2008.

[15]	 G. Salton. Automatic Text Processing. Addison-Wesley, 1989.
[16]	 C. J. van Rijsbergen, Information Retrieval. Butterworths, London, 2nd

edition. 1979.
[17]	 A. Leuski, “Evaluating document clustering for interactive information

retrieval,” in Tenth international conference on information and
knowledge management. Atlanta, Georgia: ACM Press; 2001.

[18]	 A. Leuski and J. Allan, “Improving interactive retrieval by combining
ranked lists and clustering in RIAO,” College de France; 2000.

[19]	 H. Zeng, Q. He, Z. Chen, W. Ma, and J. Ma, “Learning to cluster
web search results,” in Proceedings of the 27th annual international
ACM SIGIR conference on Research and development in
information retrieval (SIGIR ‘04). 2004. ACM, New York, NY,
USA, pp. 210-217.

[20]	 S. Decherchi, S. Tacconi, J. Redi, A. Leoncini, F. Sangiacomo, and R.
Zunino, “Text Clustering for Digital Forensics Analysis,” in Journal of
Information Assurance and Security, No. 5, pp. 384-391, 2010.

[21]	 N. L. Beebe, “Improving information retrieval effectiveness in digital
forensic text string searches: clustering search results using self-
organizing neural networks,” PhD thesis, Department of Information
Systems and Technology Management, College of Business, The
University of Texas at San Antonio, 2007.

[22]	 L. Massey, “Determination of Clustering Tendency With ART Neural
Networks,” in Proceedings of 4th Intl. Conf. on Recent Advances in Soft
Computing, Nottingham, U.K., 12 & 13 December 2002.

[23]	 L. Massey, “On the quality of ART1 text clustering,” Neural
Networks(16)5-6, pp.771-778, 2003.

[24]	 L. Massey, “Real-World Text Clustering with Adaptive Resonance
Theory Neural Networks,” in Proceedings of 2005 International Joint
Conference on Neural Networks, Montreal, Canada, July 31- August 4,
2005.

[25]	 L. Massey, “Le groupage de texte avec les réseaux de neurones ART1,”
PhD thesis, Faculté d’ingénierie du Collège militaire royal du Canada,
2005.

[26]	 S. Grossberg, “Adaptive pattern classification and universal recoding: I.
Parallel development and coding of neural feature detectors,” Biological
Cybernetics, 23, pp. 121–134, 1976.

[27]	 G. A. Carpenter, S. Grossberg, and D. B. Rosen, “Fuzzy ART: Fast
Stable Learning and Categorization of Analog Patterns by an Adaptive
Resonance System,” Neural Networks, 1991. Elsevier Science Ltd.
Oxford, UK, UK, Volume 4 Issue 6, pp.759-771.

[28]	 G. A. Carpenter and S. Grossberg, “A massively parallel architecture
for a selforganization neural pattern recognition machine,”
Computer Vision, Graphics, and Image Processing, vol 37, pp. 54-
115, 1987.

[29]	 L. Heins and D. Tauritz, “Adaptive resonance theory (ART): An
introduction,” unpublished, http://web.mst.edu/~tauritzd/art/art-
intro.html (1995).

[30]	 B. Moore, “ART 1 and Pattern Clustering,” in Proceedings of the 1988
Connectionist Models Summer School, pp. 174-183, 1988.

[31]	 T. Hudík. Tool: ART software package. http://users.visualserver.org/
xhudik/art/, accessed 07/23/2011.

[32]	 J. Santos and S. Ramos, “Using a clustering similarity measure for
feature selection in high dimensional data sets,” Intelligent Systems
Design and Applications (ISDA), 2010 10th International Conference
on, 2010, pp. 900-905

[33]	 A. Strehl, J. Ghosh, and C. Cardie (2002), “Cluster ensembles - a
knowledge reuse framework for combining multiple partitions,”
Journal of Machine Learning Research, 3: pp. 583–617.

[34]	 N. Vinh, J. Epps, and J. Bailey, “Information theoretic measures for
clusterings comparison: is a correction for chance necessary?,” in
Proceedings of the 26th Annual International Conference on Machine
Learning (ICML ‘09)

