
58

Abstract— The Microsoft Word is one of the most utilized

editors in the world. Most of the time, the analysis of a Microsoft

Word document is just simple as verifying if its content interests

to the investigation, and, sometimes, extract some metadata. We

show in this paper, that Microsoft Word can, under some

circumstances, store older versions of a document. We also

present a technique to extract these versions, where our program

prove to be efficient to recover up to 12 older versions of a

document.

Index Terms—Microsoft Word previous versions

I.INTRODUCTION

The Microsoft Word is today one of the most utilized

editors in the world. Due to this, the great majority of the

medias seized in police procedures or in private investigations

includes several files created with this program. Usually, the

analysis of these documents is just verifying the relevance of

the content to the case in subject and reporting it or not. Other

information, called metadata, can also be extracted, such as

author, company, title, date and hour of creation, modification,

impression, etc.

However, we observed that, in some cases, the size in bytes

of a Microsoft Word binary file increases, even if part of the

text is deleted in several sessions of work. Opening the file

with a hexadecimal editor, we verified that the deleted text still

continues stored, in spite of not being more used by the editor.

The objective of this work was to study the binary structure

of the files of Microsoft Word documents and to develop a

tool to recover the texts already deleted, but still presents

inside of the binary, what we called previous versions of the

current document.

II.STRUCTURE OF A MICROSOFT WORD DOCUMENT

We found published the binary formats of the documents of

Microsoft Word 6.0 and of Microsoft Word 97 (version 8) in

the site www.wotsit.org, however we did not find formats of

more recent versions. The information presented in this work

base on the binary format of the document of Microsoft Word

97 (version 8) [2], but tests and other references [3] show that

the versions, until the Word 2003, possess similar structure.

Microsoft announced that next version of Microsoft Word

(Word 2007) will use XML as file format, altering the

extension of .DOC to .DOCX, leaving the option to also utilize

the format of the Word 97-2003 [3,4].

The information presented in this section are quite

summarized and simplified to facilitate the understanding.

More details are available in [2].

The documents created with Microsoft Word are binary

files that follow the Microsoft OLE 2.0 (Object Linking and

Embedding). This means that the Word uses the functions and

procedures defined by standard OLE, which are available as a

programming interface (API), to create and maintain a

document. Thus, to access specific information inside a binary

Word file, we should open it and to examine it through

existent functions in the library of functions of API OLE.

The Word binary file is composed of several streams, and

the ones that interest us are: main stream, summary

information stream and table stream. The main stream consists

of the Word file header (FIB - File Information Block), the

text, and the formatting information. The FIB gives the

beginning offset and lengths of the document's text stream and

subsidiary data structures within the file. The summary

information stream stores basic information, like the author

name and company. The table stream containing several data

structures that describes a document. In some cases, it is made

a backup, and exists two streams, called 0Table and 1Table.

The data structure that most interests us is the piece table,

because it describes the logical sequence of the characters in a

document. We called physical position of a character its

position in the binary file and logical position its position in

the document that the file represents, that is its position as

visualized by the user in the moment of the edition with the

Word.

III.ANALYSIS OF A MICROSOFT WORD DOCUMENT

Recovering previous versions of
Microsoft Word documents

Murilo Tito Pereira and Alexandre Cardoso de Barros

Brazilian Federal Police

{murilo.mtp , alexandre.acb}@dpf.gov.br

59

The analysis of documents produced with Microsoft Word

or with other text editor is just, in most of the cases, verifying

if its content links with the investigation in process. In some

circumstances, it is also interesting to observe other

information (metadata) embedded in the summary of the

document, like, for example, author, company and date and

hour of creation, modification and impression of the

document. However, there are cases that the simple knowledge

of the current content of the document and of the metadata

attachment is not enough to form proofs. An example of that

would be a case for which is important to know if the

document suffered previous editions and which were the

content of these previous versions. Let us imagine the situation

where the analyzed document presents the content below:

" To Mr. John.

Please, make a deposit of US$ 100.000,00 in the account

number 1234-5, Bahamas Bank, on the 10/10/2000.

Mr. Smith. "

Probably, a document of this type was sent by fax to Mr.

John, whenever Mr. Smith needed of a deposit. Mr. Smith's

normal procedure, whenever he needed a new deposit, it was

open the document above and to alter the data that interest, as

date, value, and account, and to send a fax to Mr. John with

the new solicitation. As the document was altered and possibly

safe, a new document won't be created. In a simple analysis,

only the last deposit solicitation would be visualized.

Probably, however, several solicitations based on this

document may have happened before. Our work intends to

present a solution for this demand of deeper Microsoft Word

documents analysis.

IV.PROPOSED SOLUTION

Motivated by the problem presented in the previous section,

we studied the Word files based on empiric tests and in [2]. As

our work involved a lot of Word non documented actions, they

can vary from version to version.

The first verification during the work was that when the

program option "Allow fast saves" is enabled and a certain

document suffered several editions, the respective texts of

previous editions will still exist in the binary of the file. That is

easy to verify, just editing a document, and saving it some

times. After that, if we open the document in a hex editor, the

document may contain text that was previously deleted.

Microsoft has already noted this behavior [6]. The forensic

expert, however, doesn't know where those texts were located.

It is important to stand out that the indexed search tools

usually work on the text that those files represents, not

indexing words that were deleted, but that can be inside of the

binary of the file. Obviously a search in the whole content of

the file would locate the deleted words.

The following step was to discover if, in some way, the

piece table (table that describes the logical sequence of the

characters in a document) registered these alterations. Even so,

we verified that the piece table is static, storing only one

version of the document. We also verified that Word uses two

table streams, 0Table and 1Table, alternately to save the

alterations in a complex document. This way, there would be

at least two piece tables, one for the current document and

another for the previous version, being possible, then, to

recover the last version of the document.

In our tests, we observed that the physical location of the

piece table inside of the file moves when it is created again,

and the new one does not wipe the old table. With that, we

started to seek for the previous piece tables and we verified

that they continued intact inside of the file. That scenery is

similar to what happens in FAT/NTFS file systems when a file

is deleted: the file is marked as deleted, but its content and the

reference to the file continue in the disk. The act of recovering

the previous piece tables allows easily to extract the previous

versions of the document since the piece table describes the

logical sequence of the characters in a document and the

characters in a complex document are not erased.

The structure of the piece table consists of two vectors of n

positions, where n is the amount of disjoint blocks of text,

stored sequentially. The first vector, called CP (Character

Position), defines the partitioning of the document in non-

continuous parts. The second vector, called PCD (Piece

Descriptors), registers the physical position of each part of the

text indexed by the CP vector. PCD also keeps the references

for the formatting information of the text.

An indicator of one byte, represented by the number two,

and the size in bytes of the piece table are stored before the

vectors. An example of the vectors of the piece table is shown

bellow, not considering the formatting information of PCD:

Index 1 2 3 4 5 6 7

CP

Vector

0 5 16 24 30 50 60

PCD

Vector

900 950 870 920 1000 1200 1100

This example shows that the document is divided in 7 text

blocks. The first block, that stores the characters from 0 to 4,

is located starting at the physical position 900. The second

block, that stores the characters from 5 to 15, is located

starting at the physical position 950, and so forth.

We developed an algorithm to locate possible piece tables

inside of the table streams. The algorithm scans the whole

60

space of the table streams, seeking for a data structure similar

to a piece table. Finding such structure, the text referenced is

extracted as a previous version of the document. Step by step,

we have the following:

1. Seek for the indicator 2;

2. Read 4 bytes, corresponding to the size in bytes of the

piece table. This value should be smaller than the size of the

file so that it is valid.

3. With the size, the amount of positions of the vector is

calculated, that we called n, knowing that each position of CP

occupies 4 bytes and each of PCD 8 bytes. The result for n

should be integer so that it is valid.

4. Read n positions of 4 bytes and to verify if it is in

ascending order.

5. Case all the previous steps succeed we considered that we

found a piece table, and the text regarding it is extracted.

This algorithm was implemented in C and the corresponding

program gets to recover with success texts of previous

editions, since the document is complex and elaborated in the

Word versions 97 to 2003. Microsoft says that occurs up to 15

fast save actions before a document is reconstructed [5], so it

is, in thesis, possible to recover up to 15 versions. In tests, we

got to recover up to 12 texts, being one of them the current

version, because our program doesn't make distinction. It is

not possible to determine a chronological order for the

versions neither a pattern of behavior, because it is a not

documented action of Word. In our tests it was not found any

piece table by mistake, showing that the restrictions imposed

above are enough to find the correct piece tables, without

incurring in false positive. The largest limitation of the

program is not recovery formatting information and objects

(illustrations, graphs, videos, etc), that was left for a future

work.

Besides the text, the program also extracts the list of the

users' names that saved the document and the respective save

directories. This function is documented in [2].

The tool is available for police institutions, by contacting

the authors.

V.CONCLUSION

In this work we presented a technique that can be used by

Forensic Computer experts to recover previous versions of

Microsoft Word documents. These informations exist inside of

the document binary file, even so in a way not documented and

not accessible to the user. It is important to stand out that the

indexation tools usually work on the updated text only, and

they won't index words of previous versions.

We showed in which situations the Word store the previous

versions, how the developed algorithm works, the results and

the limitations of the developed tool. We left as future work

the recovery of formatting information and objects

(illustrations, graphs, videos, etc) of the document.

REFERENCES

[1] Microsoft Word 6.0 Binary File Format, available at

http://www.wotsit.org/download.asp?f=wword60.

[2] Microsoft Word 97 Binary File Format, available at

http://www.wotsit.org/download.asp?f=word8.

[3] Walkthrough: Word 2007 XML Format, available at

http://msdn2.microsoft.com/en-us/library/ms771890.aspx.

[4] What's New for Developers in Word 2007, available at

http://msdn2.microsoft.com/en-us/library/ms406055.aspx.

[5] Frequently Asked Questions About "Allow Fast Saves",

available at http://support.microsoft.com/kb/291181.

[6] Word Document That Is Opened in Text Editor Displays

Deleted Text, available at

http://support.microsoft.com/kb/287081/EN-US.

